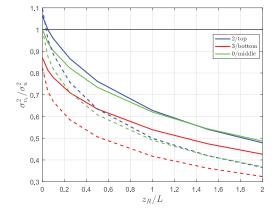

Workshop #10: Turbulence Intensity Measurements with LiDARs -Applications to Loads Verification and Site Suitability

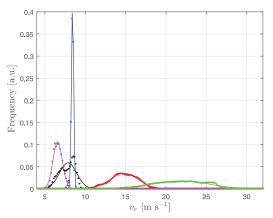
Ameya Sathe, David Schlipf, <u>Eric Simley</u>, Detlef Stein 2018 IEA Wind Task 32 General Meeting October 22, 2018

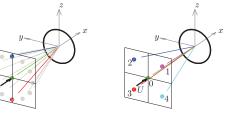
Workshop Overview

- Workshop hosted by Ørsted in Gentofte, Denmark, September 2018
 - Workshop leader: Ameya Sathe, Ørsted
- Motivation
 - Site suitability and loads verification require measurements of turbulence intensity (TI)
 - Site suitability: assess environmental conditions to determine suitability of site for wind farm development
 - Load verification: assess whether models used to simulate loads for turbine design are sufficient, based on comparison with field measurements
 - If measurements are acceptable, lidars can serve as a more efficient and less expensive alternative to traditional sensors for determining TI
- Workshop Objectives
 - Are there barriers to estimating TI using lidars?
 - Do the barriers influence the use of lidars for load verification and site suitability studies of wind turbines/farms?

Workshop Structure

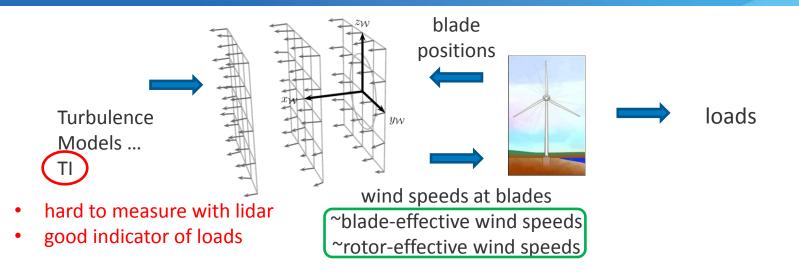


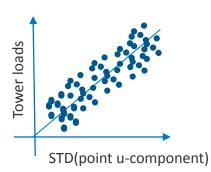

- Expected outcome
 - Exchange of experience in TI measurements and load verification/site suitability studies with lidar
 - Initiation of a working group to write a common paper based on the results of the workshop

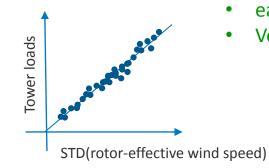

Measuring TI with Lidars

- Lidars considered
 - CW or pulsed
 - Ground based or nacelle mounted
- Two main problems with lidar turbulence measurements
 - Measurement volume
 - Cross-contamination
- Turbulence models can be used to calculate ratio between lidar-measured TI and point TI
- Averaging in probe volume may be mitigated using the average Doppler spectrum
- Cross-contamination may be avoided by computing statistics before beams are combined

Figures from Peña, A., Mann, J., & Dimitrov, N. K. (2017). Turbulence characterization from a forward-looking nacelle lidar. *Wind Energy Science*.






Barriers Identified	Mitigation of Barriers
Volume measurements	Converging beams; tight probe volume; Doppler spectra averaging method; site and turbulence specific transfer function
No available method to get unfiltered variance for pulsed lidars	Determine if pulsed lidars provide useful measures of spectral broadening
Cross-contamination from other velocity components	Converging beams; 6-beam geometry
Different levels of knowledge and understanding, not enough transfer	Effective compilation and dissemination of information; recommended practices

Barriers Identified	Mitigation of Barriers
Lack of concrete guidance on acceptable level of accuracy	Agreement on needed accuracy; application specific; sensitivity study on loads
Uncertainties in lidar measurements present risk to OEMs and customers	sensitivity study on loads (e.g., field, CFD); start with simple terrain; quantify bias and uncertainty for many different sites
Many TI correction methods may be site/atmospheric condition specific	Doppler spectra averaging method; more work needed to develop site-independent correction methods
Best practices and expected correction methods must be defined for standard deployment scenarios	Form a working group to develop recommended practices; joint industry project

Outside the box: Is TI the Best Measure for Loads?

- easier to measure with lidar
- Very good indicator of loads

- Intention to create a roadmap for the use of lidar TI measurements for load verification and site suitability
- Exploring possibility of joint industry project to develop recommended practices