WIND ENERGY SCIENCE CONFERENCE Mini-Symposium: Can Wind Power Be Socially Acceptable? 26.05, 2021

Coevolution of Technology and Society: Case Study of Offshore Windfarm in Japan

Yasushi Maruyama

(Nagoya University)

Background Offshore wind farm development

• Potential: 8080TWh(IEA,2018, *Offshore wind technical potential and electricity demand*)

2

- ♦ 10 planned in port area and far shore(10MW-200MW, total 5.4GW)
- Target:90GW in 2050

Legal framework for permission (far shore)

- Bottom up(prefecture) approach authorized/supported by central government
 - Strategic environmental impact assessment financed by national government
 - Stakeholder conference by local government (e.g. community, fishers association...)
 - 5 Promotion area(red dot) and 4 Promising area(yellow dot) in 2021
 - Other 6 areas are preparing
- Competition (tendering) of project initiatives for occupation of the sea area

Competition for Permission to Occupy the Sea Area(Far shore)

Price 120pt.	Business feasibility 120 pt.									
	Capacity to implement projects (80pt.)						Consensus building with local communities(40pt.)			
	Experie nce (30pt.)	Ability to complete the project (35pt.)			Stable power supply (15pt.)		Consensus building (20 pt.)		External benefit for local society (20pt.)	
	Experience (30pt.)	Feasibility (20pt.)	Project Risk management (15pt.)	financial plan (0pt.)	O & M, price reduction in the future (10pt.)	Advanced Technology (5pt.)	Public engage- ment (10pt.)	Co- benefit with Fishery (10pt.)	Local Economy (10pt.)	National economy (10pt.)
Elements of disquali- fication	No Experienc e	Immature plan	Serious failure in risk manageme nt	Lack of feasibi lity	à à		Lack of capability in stakeholder management			

Consensus building composes 1/6 of total points

Challenge

Stakeholder management

- Social acceptance in general
- Fisher
 - Near shore(1-3km): Simple and stable fishery right
 - Far shore(2/3km-): Complex and dynamic fishery right (Yearly licensed fisheries) Difficulty in compensation
- Strong pressure for cost efficiency
 - Limited budget for compensation

Fishery co-benefit model of offshore windfarm RCE 洋上風力発電等の漁業協調の在り方に関する提言 《第2版》 ―着床式および浮体式洋上ウィンドファームの漁業協調メニュー― 上風力発電装置(12基) 浮沈式畜養イケス(2基 6 B 0 . 着底式ADCP(2基)

(浮体式洋上ウィンドファームにおける漁業協調メニューの概念図)

海底送電ケーブル

Research Institute for Ocean Economics http://www.rioe.or.jp/2015teigen.pdf

沖側⇒

Overview

Artificial fishery reef

Artificial fishery reef

Aquaculture facility for seaweed

Aquaculture facility for fish

Aquaculture facility for fish

Aquaculture facility for seashell

Basement for fishing net

Poaching Prevention Watch

surveillance camera

surveillance camera

A REAL PROPERTY AND A REAL

http://www.rioe.or.jp/2015teigen.pdf

Co-benefit for fishery

- Creation of Fishing Ground : Protection and Culture of Fishery Resources, aquaculture, fishing reef...
- ◆ Data Collection, Information Service : Oceanographic condition, Hydrographic condition...
- Sightseeing, Recreation : recreational fishery, Fishing Park, Wind Farm Cruise, diving spot...
- Electricity supply : ice plant, marine products factory, aeration for aqua farm, E-Fishing Boat...
- Education : Eco-tourism, training school...
- Participation : Maintenance, Construction, Finance, Equity, ...
- Disaster Prevention : Emergency supplies storehouse, Refuge shelter...
- ◆ ... :Community fund for resource management ...

Pilot project

Pilot project: Marine Energy and Fisheries Symbiosis Center

Objectives

- Build a model of cooperation and symbiosis between marine energy and fisheries
- Coevolution of offshore wind business, fisheries, and marine ecosystems.

Activities

- Research
 - Monitoring of seaweed beds, fish, benthic organisms, etc. in the power generation area
 Resource recovery through seaweed bed propagation and seedling release in the power
- generation area Increase fishery resources
 - Research and planning for the use of the power generation area as a fishing ground
 - Information gathering and coordination with fishermen in the power generation area
- capacity building
 - Training of engineers for construction and maintenance of structures for marine renewable energy
 - Training investigators to use state-of-the-art equipment (unmanned submersibles/ROVs, drones, etc.)

"Appropriate technology" for co-benefit

Co-benefit

Community Co-Benefit Mapping (based on local workshop)

Concluding remarks

Coevolution of technology and society

- From compensation to invest
- Cost effective multi-function infrastructure
- Appropriate technology
- Synergy/ Co-benefit with local society
- Variety of stakeholders and distributional justice
 - Specific \Leftrightarrow general

■ Intra generation(short term) ⇔ Inter generation(long term)