TIME	MEETING
0900 - 1200	
0900 - 1200	Individual Task Meetings
	Task 41 Meeting
	Task 54 Meeting
1200 1100	Task 52 Cold Climate Working Group Meeting
1200 – 1400	Lunch
1400 – 1745	Joint Task Meetings by Topic
	1400-1445
	Session 1: Turbulence measurements and the impact of temperature on
	turbulence
	Lead: Alexander Stoekl
	What turbulence measurement capabilities are available from lidar?
	 What capabilities or outputs are needed to support measurements for distributed wind?
	Session 2: Cold climate siting
	Lead: Timo Karlsson
	Why is it important to consider ice throw risk and the likelihood of icing as
	two separate things?
	How do we estimate icing risk to people living/working near (distributed)
	wind turbines?
	 How are new or existing ice throw risk assessment tools relevant to distributed wind turbines?
	1445-1500 Transition
	1500-1545
	Session 3: Resource assessment for isolated systems with adverse weather
	conditions
	Lead: Julia Gottschall
	 How can lidar be deployed in remote communities with cold or adverse weather conditions?
	Could a short-term lidar deployment coupled with reanalysis products
	provide a sufficient (accurate) wind resource assessment?
	What are the opportunities/challenges of lidar deployment in cold
	climates?
	 What are the characteristics specific to distributed wind that lidar needs to address?

Session 4: Understanding icing

Lead: Marc Defossez

- How can we achieve a better understanding of icing at the lower heights typical for distributed wind? (Distributed wind turbines often have 50 m towers or shorter while the ice atlas data are typically at heights of 80 to 150 m).
- How can lidar be used for icing detection or prediction?

1545-1600 Transition

1600-1645

Session 5: Lidar business models for distributed wind

Lead: Alice Orrell

- What business models already exist or are needed for the distributed wind market (e.g., rental, purchase, data as a service)?
- What does the market for lidar for distributed wind need to be to convince lidar OEMs to participate in this market?
- What lidar characteristics are needed for distributed wind?
- What are the use cases?
- How could costs be reduced (e.g., reduction of features, simpler equipment, reducing complexity of components, shorter distance range)?

Session 6: Scaling down icing technology solutions

Lead: Ian Baring-Gould

- Can icing technology solutions (and mitigation strategies) developed for large turbines be scaled down and applied to distributed wind turbines?
- What solutions are already available in the market?

1645-1700 Transition

1700-1745

Closeout Session

Lead: Ian Baring-Gould

- 5 minute summary presentation from each session
- Other observations from the day's meetings

1900

Dinner

Thursday 20 October 2022

TIME	MEETING
0900 - 1200	Individual Task Meetings
	Task 41 Meeting
	Task 54 Meeting
	Task 52 Complex Terrain Working Group Meeting
1200 – 1400	Lunch
1400 – 1600	University Research Collaborative Student Symposium 2022
	Lead: Trudy Forsyth (remote) and Ian Baring-Gould
	Welcome and Introduction: Ian Baring-Gould
	Future Opportunities: David Wood
	Presentation 1 : <i>Turbulence in Lichtenegg,</i> Daniel Oesterreicher, University of Applied Sciences FH Technikum Wien (in person)
	Presentation 2 : <i>Lifecycle Assessment of Small Wind Turbines</i> , Jake Wood, Murdoch University (pre-recorded) (Academic Sponsor: Jonathan Whale)
	Presentation 3: Tilt-induced Yaw Misalignment of a Small Wind Turbine, Lucas
	Price-Nowak, Hanze University of Applied Sciences (virtual) (Academic Sponsor: Gerard Scheppers)
	Presentation 4 : California Polytechnic State University (Academic Sponsor: Patrick Lemieux)
	Presentation 5: OPEN
	Closing Discussion