Weather-driven Energy System

Presentation to IEA
12 September 2022

INTRODUCTION TO EIRGRID

- We are owned by the Irish Government, and we are a regulated utility. This means we operate solely for the benefit of the electricity user.
- We do not generate electricity - we bring it from generators across the grid. We also operate some interconnectors with neighbouring electricity grids.
- We run the wholesale electricity market. This ensures electricity is always available at the most economic price possible.
- We do not own the electricity grid, and have no vested interest in adding to it.
- We only upgrade or add to the grid in response to government policy, or where it is an essential response to secure Ireland's electricity supply.

ISLAND OF IRELAND POWER SYSTEM

Facts \& Features

Prevailing wind onto Western Atlantic Coast
Main load centres on the East Coast
Two 500 MW HVDC links to GB
High level of operational constraints (e.g. 75\% SNSP)
Fuel mix dominated by gas and wind

Statistics

10 GW Dispatchable/Controllable Gen (incl wind \& solar)
7 GW Winter Peak Demand
2.5 GW Summer Valley Demand

Record Wind 4.5 GW on $5^{\text {th }}$ Feb
Record Wind 96\% of all-island demand on $6^{\text {th }}$ Feb

LET'S TALK ABOUT THE WEATHER

- Why is it important to forecast?
- What forecasts do we use?
- How do we use the forecasts?
- What does the future hold?

TODAY

ENERGY TRANSITION

$2 \mathrm{pm} 11^{\text {th }}$ April

$2 \mathrm{pm} 13^{\text {th }}$ April

Fuel Mix (MWh)

Need to manage each type of day.
Need to manage the transition between the days.

EIRGRID'S CHANGE MANAGEMENT

DS3 \& SOEF Programmes

System Policy

- Robust Operational Change Governance
- Systematic System Trials to push operational limits

System Performance

- Power System
- Generator and new technology

System Tools

- EMS including Wind Dispatch Tool
- Wind Forecasting Tool
- New: Ramping Margin Tool
- New: Look Ahead Stability Assessment Tool
- New: Voltage Trajectory Tool

EIRGRID

GRDLP

CURRENT STATE OF EIRGRID'S SCHEDULING TOOLS

WIND \& SOLAR ENERGY FORECASTS

- Each vendor generates an ensemble of forecasts based on different weather models.
- The average forecast is provided as the Variable Generation Forecast.
- The ramp forecast is generated by calculating the ramp for each forecast within the ensemble, for $1,3 \& 8$ hours.
- The $80^{\text {th }}$ percentile is the value provided in the ramp forecast.
- The Variable Generation Forecast and the Variable Generation Ramp Forecast are used to calculate the Variable Generation Uncertainty.
- The Variable Generation Uncertainty is combined with Load Forecast Uncertainty and Interconnector Uncertainty to produce the Ramping Requirement.

EIRGRID

- The Ramping Requirement is an input to the Integrated Scheduling Process.

RAMPING MARGIN TOOL IN ACTION

	TCG		Ramping Margin 1			
	Name	Scheduling Interval	Req.	Actual	INT LD	Shadow Price
			(MW)	(MW)	(MW)	(€/ MW)
		15/12/2021 13:30:00 GMT	876.02	1706.43	164	0
		15/12/2021 14:00:00 GMT	880.36	1702.85	164	0
		15/12/2021 14:30:00 GMT	976.95	1677.9	164	0
		15/12/2021 15:00:00 GMT	1108.02	1625.31	164	0
		15/12/2021 15.30.00 जाVा	1248.82	1450.34	164	0
	ROI	15/12/2021 16:00:00 GMT	1348.97	1348.97	164	20.4
		15/12/2021 16:30:00 GMT	1156.18	1156.18	164	8.2
		15/12/2021 17.00:00GMMT	85913	946.04	164	0
		15/12/2021 17:30:00 GMT	624.39	864.33	164	0
		15/12/2021 18:00:00 GMT	562.61	1002.26	164	0
		15/12/2021 18:30:00 GMT	586.84	975.14	164	0
		15/12/2021 19:00:00 GMT	580.23	933.84	164	0

Wind Forecast

__Gen Unit Schedule with Ramp Req

EIRGRID

RAMPING IN HIGH WIND

Exercise Judgement:

- Schedule "defensively".
- Consider "using lower forecast" in long term schedule.
- Consider scaling down the forecast in long term schedule.
- Consider commitment of marginal ‘slow start’ units.
- Share less reserve capacity between North and South.
- Consider increasing regional stability/Target lower flows between regions.
- Preemptively constrain wind to reduce impact of gusts and improve frequency control and reduce risk of inadvertent protection trippings.

RAMPING IN STORM CONDITIONS

Convene Storm Response Team

- Return circuits from maintenance outages.
- Put power system trials on hold.
- Audit protection settings.
- Identify risk areas.
- Anticipate tripping and impacts thereof (loss of load, loss of wind)
- Communicate internally and externally.
- Staff up the Control Centres.
- Again: Schedule defensively.

LOOK-AHEAD STABILITY ASSESSMENT TOOL

- Simulates tripping of 800+ scenarios
- Checks power system stability
- Operates within secure frequency ranges
- Stay within Rate of Change of Frequency (RoCoF) limit
- "What if" transfer analysis
- Does not consider ramp forecast

VOLTAGE TRAJECTORY TOOL

Home / Online Scenarios / Ngrid / Map

- Operate within secure voltage ranges
- Suggests corrective voltage actions
- Does not consider ramp forecast

EIRGRID

THE FUTURE: SHAPING OUR ELECTRICITY FUTURE

THE FUTURE: SHAPING OUR ELECTRICITY FUTURE

THE FUTURE: SHAPING OUR ELECTRICITY FUTURE

In Summary:

Operating our weather-driven power system is very complex. This complexity will increase so our ability to manage uncertainty will have to grow and grow.

Thank You

www.eirgridgroup.com
www.smartgriddashboard.com

