

How are wind forecasts used operationally? A tour of marketing wind energy

Malte Rieck - Vattenfall Energy Trading GmbH

2022-09-12 Dublin - JEA Task 51 Workshop

-11

Outline

- Vattenfall
- Day-ahead market: bidding under uncertainty
- Intraday market: trading of forecast updates
- Imbalance market: avoiding imbalance risks
- Challenges for forecasting solutions

#european-markets, #wind-energy, #short-term markets

Vattenfall Wind Power Portfolio

"Fossil free within one generation"

Vattenfall maximises value of wind portfolio

- Capacity under mgmt. 9236 MW (incl. PPA)
- Onshore: 3970 MW
- Offshore: 5266 MW

Forecasting & Optimisation of ~5000 turbines from own assets and third party PPAs

Wind power plays a key role in Vattenfall's strategy

Offshore Wind Park Hollandse Kust

Largest and first subsidy-free offshore wind park

South (1500 MW, Vattenfall)

North (750 MW, Cross Wind) West (1500 MW, tender)

Mitigate concentration risk

- Improved forecasting
- Steering
- Green hydrogen
- Floating solar
- Battery storage

Netherlands

• Takes forecasting requirements and imbalance management to the next level

Onshore Hybrid Park Haringvliet

- Combined assets Wind-Solar-Battery (72MW)
- Sharing grid connection: Wind power depending on additional assets (solar, battery, grid etc.)
- Automated controller to optimize revenues
- Forecast model training becomes a challenge

Wind power schedule may depended on other meteorological and market parameters

How is Wind Energy Traded?

Day-ahead Market: Bidding Under Uncertainty

Challenges Day-ahead Forecast

NWP problems infiltrate wind power forecasts:

- Low pressure systems, large scale wind ramps (resolved scales)
- Diurnal cycle, low-level jets, thunderstorms, cold pools, land-sea breeze, convection/turbulence etc. (unresolved scales)
- Technical restrictions: overwind shutdown, (grid, noise, bird) curtailment, icing, maintenance

• Multiple possibilities to improve day-ahead forecasting

Multi Model Forecast Combination

Mix depending on latest performance and weather regime

Day-ahead Forecast Uncertainty

Uncertainty analysis is key to a successful day-ahead bidding

Classical ensemble forecasts deliver limited value

- 1) ML techniques using historic data (statistical, e.g. k-nn)
- 2) "Poor man's" model ensemble
- 3) Analysis by meteorologist

Source: MetDesk.com

11/09/2022 – Malte Rieck Confidentiality – None (C1)

Adjust bidding based on uncertainty

-

Intraday Market (1): Continuous Algorithmic Trading

Forecast Change Causes Prices to Drop

- Wind front underestimated (~20 %)
- Radiation underestimated (stratus clouds)

EPEX Wholesale Prices Germany 26/05/2019

- Utilities sell wind & solar volumes intraday
- Customers enjoy sunshine
- Feedback radiation -> demand
- ightarrow ightarrow Negative intraday prices

The Fast and the Furious

intraday markets

Algorithmic Trading Reduces Costs

Automate the position closing process

- Python Algorithmic Trading System (PATS)
- Using advanced forecasting and optimisation models and infrastructure
- Utilize rapid forecast updates
- Overshoot problem from weather models

Trade out the forecast updates of managed wind assets in a fully automated way

Intraday Market (2) – Nowcast Adjustment

Real-Time Data Meets Machine Learning

- Artificial neural net models trained per lead-time
- Input: Weather based forecasts, real-time information
- Scaling methods to account for missing real-time data

Search and Optimization

-UZZZY

vstem

Data Quality is Key to Improve Forecasts

Nowcast (real-time corrected forecast)

- Use ML to adjust forecast for 0-3h ahead
- Reduces error by 20-30% on average

Key input for nowcasting

- Turbine/park data in near real-time (validation & quality assurance)
- Delivery speed

Imbalance Market: Trading After Delivery

Volatile Imbalance Markets are High Risk for Dispatching Wind Energy

- Imbalance is the difference between actualand scheduled supply & demand
- measured on different settlement periods
 - 5 min (parts of US, DK), 15 min (DE, NL), 30 min (UK), 60 min (Sweden)
- helper will earn
- causer will pay out (wind correlated with system)
- Energy crisis -> markets more volatile

Your Imbalance cost = System Imbalance Price **x** Your Forecast Error

Option 1: Adjust Forecasts to Minimize Imbalance

Diurnal cycle wind power - Germany August 2022

T-storms passing over Germany

-> non-optimized forecasts underestimate winds

 Adjust for meteorological biases as good as possible

Option 2: Optimize Forecast by Value

- DK wind farm HornsRev simulated on day-ahead auction using different weather models
- Simple power curve approach using forecasts from ECMWF, GFS, HIRLAM (DMI) and combinations

SPOT	NBIAS	NMAE	NRMSE
COMB	1.47	11.65	17.33
DMI	1.10	12.44	18.69
GFS	3.10	14.19	21.79
ECMWF	0.79	11.75	18.10
GEN	1.08	9.94	15.79

- Best trading results from GFS model.
- ECMWF shows lowest error but correlated with system imbalance -> errors are on average more expensive!

C. Hagberg, Vattenfall 2018: Verification of power prediction tools used for wind power forecasts - Cumulative imbalance costs HornsRev wind farm

Best physical model not necessarily best trade!

Option 3: Steering – Turn Wind into Flexible Asset

Maximise Revenues Across Markets

Not discussed: Term/futures markets Ancillary service markets

Wind Optimisation is About Managing Positions and Revenues Against Two-fold Uncertainty

Production uncertainty

Manage and optimise the expected power

production and its unavoidable uncertainty and volatility

Based on i.a. best forecast incl. multi-model-mixing etc, real time data, Nowcast; expert views

Price volatility

Manage and optimise the joint dynamics of the day-ahead, intra-day and imbalance market prices

Based on i.a. estimating future power prices, market data and historical price volatility, forecasted system's electric load and renewables generation

Wind optimisation

Maximize expected revenues from selling power minus imbalance costs subject to market regulation, risk aversion and park constraints

VATTENF

Source: volue.com

Summary: How to Improve Wind Power Trading

• Wind forecasting remains key factor for successful integration of renewables

VATTENFALL