

WEATHER FORECASTING

RENEWABLE ENERGY FORECASTING WITH GPU BASED LARGE EDDY SIMULATION

REMCO VERZIJLBERGH

WITH CONTRIBUTIONS FROM THE WHIFFLE TEAM

WHIEFLE WEATHER FORECASTING 2022

Whiffle Weather Forecasting

- TU Delft spin-off founded in 2015.
- Currently 25 FTE, of which 14 FTE R&D.
- Started with focus on wind energy forecasting
- Scale-up since 2022

Outline

- LES vs. NWP
- Offshore and onshore wind farm forecasting
- Solar forecasting
- Statistical post-processing
- Future opportunities and challenges

The energy spectrum of turbulent flow in Large Eddy Simulation (LES)

The energy spectrum of turbulent flow in Large Eddy Simulation (LES)

Wavenumber k

Flow dependent

Flow independent

LES resolves all relevant physical processes and only parametrizes homogeneous turbulence

Physics parameterizations in NWP and LES

Parametrization: expressing the sub-grid processes in terms of resolved quantities

The LES grid is fine enough to resolve turbulence, clouds and the surface. *"Assume less, compute more"*

Explicit modelling of:

- Wind turbines
- Canopies
- Buildings
- Turbulence
- Clouds / fog
- Surface energy balance

Typical processes that are parameterized in NWP* LES: • Turbulence

- Large-scale clouds
- Convective clouds
- Surface drag
- Radiation
- Precipitation

* See for example https://www.ecmwf.int/en/elibrary/18714-ifs-documentation-cy45r1-part-iv-physical-processes

Offshore wind farm forecasting

- Turbines are part of the atmospheric model as actuator disks
- LES well proven method for representing turbulent mixing inside the wind farm
- Wakes effects in relation to atmospheric stability

Offshore wind farm forecasting ECMWF GRASP LES

Example forecast of wind farms in German bight. Hourly average 100m wind speed

Offshore wind farm forecasting

60% difference between waked and first row turbines

Small wind speed variations cause huge power swings

Verzijlbergh, R. A. (2021). Atmospheric flows in large wind farms. *Europhysics News*, *52*(5), 20–23. https://doi.org/10.1051/epn/2021502

WHIFFLE WEATHER FORECASTING 2022

Onshore wind farm forecasting ase study of wind farm on Rhodes. From top t in clockwise direction: 1. terrain height. 2.

Example forecast time series 3. Horinzontal wind speed ma

- Represents terrain in high detail (mountains, canopies, buildings..)
- Captures small-scale atmospheric phenomena (turbulence, low clouds, low-level jets)

2000 4000 6000 8000 10000 12000 14000 x-distance [m]

Solar forecasting

- New radiation scheme based on ECRad/ RRTMG
- Implementation uses a smart column

Solar forecasting

Solar feedback on atmosphere through surface energy balance

Solar forecasting

- LES gives realistic 3D cloud representations
- Radiative transfer on all columns
- Note the stochastic nature of clouds

Whiffle combines machine learning and LES for operational power forecasting

How does LES relate to statistical post-processing?

How does LES relate to statistical post-processing?

LES uses known laws of physics...

... but is not perfect...

...so post-processing still helps.

Current and future research

- Fine-tuning heterogeneous conditions
- Multi-GPU large domain LES
- Micro-physics
- Data assimilation
- Coupled atmosphere-ocean-wave
- Ensembles

The future of numerical weather prediction

Thank you.

Cloud field of an LES run over the Netherlands using 256 GPUs

remco.verzijlbergh@whiffle.nl

WHIFFLE WEATHER FORECASTING 2022