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Motivation
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Increasing volume of geographically distributed data

Main Barriers
Data privacy and confidentiality

Lack of monetary and non-monetary incentives for sharing data

Lack of business cases for collaborative analytics
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Collaborative analytics & RES forecasting

Privacy & 
monetization

Monetization

• Federated learning models with data from 
different owners / data sources

• Privacy-preserving protocols
• Different data exchange schemes

• Algorithmic solutions for data markets: data price 
as a function of use case specific value
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Federated Learning
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Federated learning concept

Model

from centralized to distributed learning

Master Node

Model

Worker Node

ΔW1

Aggr(ΔW1+ΔW2+ΔW3)

Worker Node

ΔW2

Worker Node

ΔW3

Source: Chen, S., et al. (2021). FL-QSAR: a federated learning-based QSAR prototype for 
collaborative drug discovery. Bioinformatics, 36(22-23), 5492-5498.

Focus of this 
presentation
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Privacy-preserving federated learning: RES forecasting

Non-linear  relation between power and 
weather variables

extension with additive models and kernels to
capture non-linearities
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Ref: C. Gonçalves, R.J. Bessa, P. Pinson, "Privacy-preserving distributed learning for renewable energy 
forecasting," IEEE Transactions on Sustainable Energy, vol. 12, no. 3, pp. 1777-1787, July 2021
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Privacy-preserving federated learning: RES forecasting

M-splinesperiodic M-splinesB-splines

I-splines

𝑿𝑿𝟏𝟏 → 𝒇𝒇𝟏𝟏 𝑿𝑿𝟏𝟏 ,𝒇𝒇𝟐𝟐 𝑿𝑿𝟏𝟏 , … , 𝒇𝒇𝒌𝒌(𝑿𝑿𝟏𝟏)
each variable is transformed in 𝑘𝑘 variables

Supported by our 
privacy-preserving 
protocol
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Privacy-preserving federated learning: RES forecasting
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Each observation is transformed to the distance relative to 
the others

Supported by our 
privacy-preserving 
protocol
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Numerical results: Improvement w.r.t. single owner data

 60 wind turbines 
 2 years of historical data

 ECMWF-HRES
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Numerical results: Splines and kernel performance

ms-splines over Gradient
Boosting Trees (no privacy)

NDK over Gradient Boosting
Trees (no privacy)
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Data Markets

Data Market

S1 S2 S3 S4 S5

Sellers

B1 B2 B3 B4 B5

Collaborative Analytics

Knowledge Extraction

Buyers

Data Value Assessment



Data market concept for RES forecasting
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Payment depends on the gain
obtained by using market sellers' data

Revenue depends on the 
actual contribution to Buyers forecast skill

Buyers

Objective: Improve forecasting skill

Sellers

Objective: Monetize their data

Data value found through 
collaborative analytics



Data market: No-regret mechanism
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payment

target data & bid price & max payment
Defines a market price (using
info from t-1)

Data allocation according to
the difference between bid and
market price

Payment depends on the
expected gain when using
allocated sellers’ data

Payment division according
to the relevance of data

forecasts

payment

B2

target data & bid price & max payment

forecasts
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Sellers’ loss when sharing their data is not considered
Goncalves, C., Pinson, P., Bessa, R. J. (2021). Towards 
data markets in renewable energy forecasting. IEEE 
Transactions on Sustainable Energy, 12(1), 533-542



Data market: Social welfare maximization
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Data allocation and prices
according to the social
welfare maximization

max (buyers’ gain – sellers’ loss)



Numerical results
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Results in: Goncalves, C., Pinson, P., Bessa, R. J. 
(2021). Towards data markets in renewable energy 
forecasting. IEEE Transactions on Sustainable 
Energy, 12(1), 533-542

Agents that maximize electricity market revenue due to “extra” dataAgent with highest reward for data sharing



Data market IOTA prototype
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Smart4RES data markets portfolio
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Concluding
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 Advantage: with federated learning & spatial-temporal 
models we only have 1 model to maintain

 Value of spatial-temporal information (power, NWP) is 
a proven result

 Different mechanisms are possible for data markets
 Challenge: data value for the seller

 To reach full potential, we need to go beyond the 
forecasting use cases 

 Data sharing in the RES sector aligned with EU 
initiatives like GAIA-X and Common Data Spaces
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