

Professor Jacob Østergaard, DTU Wind and Energy Systems IEA TCP Wind webinar 'Offshore Energy Hubs – Superpower of the Future', 2nd December 2022

Unique research challenges regarding energy islands

Next Frontier Development within Wind Energy

1980s
Onshore Wind Energy

2000s
Offshore Wind Energy

Offshore Energy Hubs

The islands will be first of its kind, involving a design from the

scratch of an with unprece

Wind Power Pla

(WPPs)

Many research questions:

- Stability
- Fault management
- Optimal grid topology
- Multi-vendor HVDC
- Grid forming converters
- Market design
- Optimal Power-to-X integration

F-117 Nighthawk

iviany technically challenging characteristics, which requires new solutions for ensuring stable operation

Converter-based Power System

• Converters are devices that are (almost) fully defined by their control ...although fundamentally performing the same, functional differences due to control

Source: Hitachi Energy

Source: Siemens Energy

Source: GE Grid solutions

Converter-based Power System

• Converters are devices that are (almost) fully defined by their control ...although fundamentally performing the same, functional differences due to control

Multi-vendor and multi-terminal HVDC

System impact of offshore energy hubs

Dynamic Model of Northern European AC/DC System

Online:

https://github.com/thematt199310/NorthEuropeanAC-DCPowerSystem-Model/

Frequency dynamics of the Northern European AC/DC power system: a look-ahead study, https://arxiv.org/pdf/2107.13890.pdf

European Grid: Static Security and Optimal Power Flow

European market model

Online: https://github.com/antosat/European-Transmission-and-Market-Models/

A. Tosatto, X. Martínez-Beseler, J. Østergaard, P. Pinson, S. Chatzivasileiadis, North Sea Energy Islands: Impact on National Markets and Grids, available online: https://arxiv.org/abs/2103.17056

Energy Islands and P2X: where shall we place the electrolyzers?

Onshore, offshore or in-turbine electrolysis? Techno-economic overview of alternative integration designs for green hydrogen production into Offshore Wind Power Hubs

Alessandro Singlitico A □, Jacob Østergaard, Spyros Chatzivasileiadis

- Offshore placement of electrolyzer achieved the best results (compared to onshore and in-turbine placements), as it leads to:
 - 13% lower electricity cost from Offshore
 Wind Power Hubs (cost of electricity delivered onshore)
 - Cost-competitive hydrogen (below 2.5 €/kg)

Zero Inertia Offshore Grids and N-1 Security

Fixed Freq. Droops of

- Fixed droops → Converters
 operated close to their limits
 are saturated → System unstable
- Adaptive Droops → Avoid permanent saturation of the converters → System stable
- Adaptive droops → need for a master controller

Papers, see: http://www.multi-dc.eu/publications/

Bornholm as test island for energy hub technology

www.balticenergyisland.com

#