Professor Jacob Østergaard, DTU Wind and Energy Systems IEA TCP Wind webinar 'Offshore Energy Hubs - Superpower of the Future', 2nd December 2022

Unique research challenges regarding energy islands

Next Frontier Development within Wind Energy

1980s
Onshore Wind Energy

\square

2000s
Offshore Wind Energy

2030s
Offshore Energy Hubs

The islands will be first of its kind, involving a design from the scratch of ar with unprec

Many research questions:

- Stability
- Fault management

Wind Power Pla (WPPs)

- Optimal grid topology
- Multi-vendor HVDC
- Grid forming converters
- Market design
- Optimal Power-to-X integration
$-$

Many technicaliy challenging characteristics, which requires new solutions for ensuring stable operation

The islands will be first of its kind, involving a design from the scratch of an "extreme power system" with unprecedented characteristics

The 100\% inverter-based separation to other systems will result in extremely low short circuit power and the system will have no (or limited) inertia

PtX Many technically challenging characteristics, which requires

 new solutions for ensuring stable operation
DTU

玉

Converter-based Power System

- Converters are devices that are (almost) fully defined by their control
...although fundamentally performing the same, functional differences due to control

Source: Hitachi Energy

Source: Siemens Energy

Source: GE Grid solutions

Converter-based Power System

- Converters are devices that are (almost) fully defined by their control ...although fundamentally performing the same, functional differences due to control

Single vendor

Multi vendor

Multi-vendor and multi-terminal HVDC

System impact of offshore energy hubs

Dynamic Model of Northern
European ACIDC System

Online:
https://github.com/thematt199310/NorthEuropeanAC-DCPowerSystem-Model/

Frequency dynamics of the Northern European AC/DC power system: a look-ahead study, https://arxiv.org/pdf/2107.13890.pdf

European Grid: Static Security and Optimal Power Flow

European market model

Online: https://github.com/antosat/European-Transmission-and-Market-Models/
A. Tosatto, X. Martínez-Beseler, J. Østergaard, P. Pinson, S. Chatzivasileiadis, North Sea Energy Islands: Impact on National Markets and Grids, available online: https://arxiv.org/abs/2103.17056

DTU

Energy Islands and P2X: where

 shall we place the electrolyzers?
Zero Inertia Offshore Grids and N-1

 SecurityFixed Freq. Droops of

- Offshore placement of electrolyzer achieved the best results (compared to onshore and in-turbine placements), as it leads to:
- 13\% lower electricity cost from Offshore Wind Power Hubs (cost of electricity delivered onshore)
- Cost-competitive hydrogen (below 2.5 €/kg)

- Fixed droops \rightarrow Converters operated close to their limits are saturated \rightarrow System unstable
- Adaptive Droops \rightarrow Avoid permanent saturation of the converters \rightarrow System stable
- Adaptive droops \rightarrow need for a

Adaptive Freq. Droops master controller

Papers, see: http://www.multi-dc.eu/publications/

Bornholm as test island for energy hub technology

