DTU 7k Bus Active Distribution Network

Overview and Features

About myself:

Aeishwarya Baviskar Ph.D. Student Department of Wind Energy and Energy Systems Technical University of Denmark Email: <u>aeish@dtu.dk</u> Phone: +4593511921

2

Ph.D. Research Topic: Wind Power Plant control in Future Active Distribution Network

Research Interest: Power system/ power plant level optimization/control, role of renewable energy sources in the future power systems

Education:

M.Sc. In Power Engineering from Technical University of Munich, Germany B.Tech. in Electrical and Electronics Engineering from Visvesvaraya National Institute of Technology, Nagpur, India Aeishwarya Baviskar | aeish@dtu.dk | +4593511921

 *
 *
 *
 *
 WinGrid

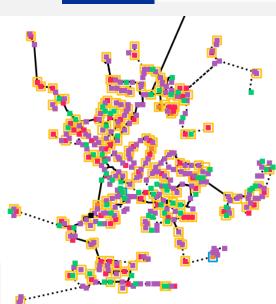
Acknowledgement:

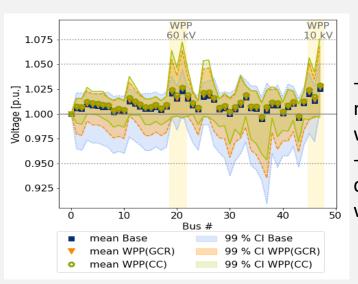
This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 861398 and Energy Technology Development and Demonstration Program (EUDP) 2019-II IEA Task 41 Journal Number 64019-0518.

Wind Power Plant Support in Active Distribution Networks

A massive amount of investment in distributed renewable generation is forthcoming in the future distribution grid

Objective:


Coordinated Control of different network assets (WPPs at 60 kV, OLTCs, VRs, etc.) for optimal operation of distribution network by cosimulating MV-LV grids while incorporating uncertainty and stochasticity from weather dependent generation and loads.


DTU 7k-Bus Active Distribution Network

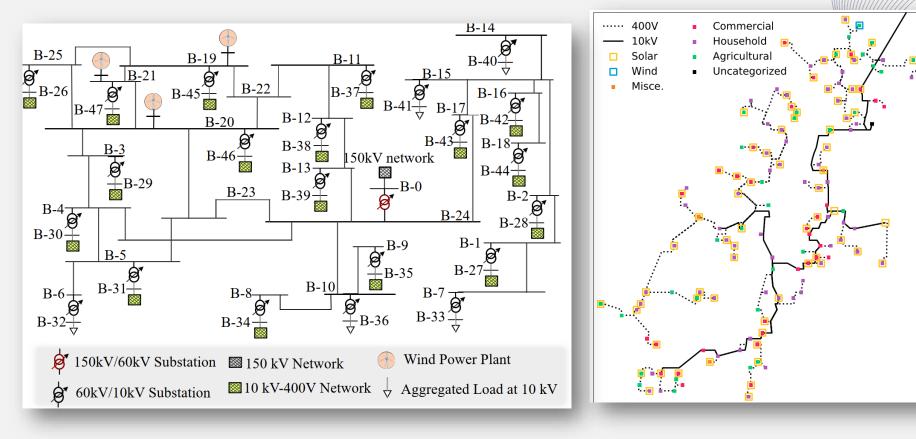
- Total 7000 buses
- Spans over 3 voltage levels
- Generation and load time-series for a year
- 150 MW of Wind + 25 MW of PV

	400V		Wind	Household
—	10kV		Misce.	Agricultural
	Solar	•	Commercial	Uncategorized

WinGrid

Energy Losses in 60kV
network decrease by ~ 5 %
with WPP support.
Voltage profiles in the
distribution grids improve
with WPP support

DTU 7k-bus Active Distribution Network

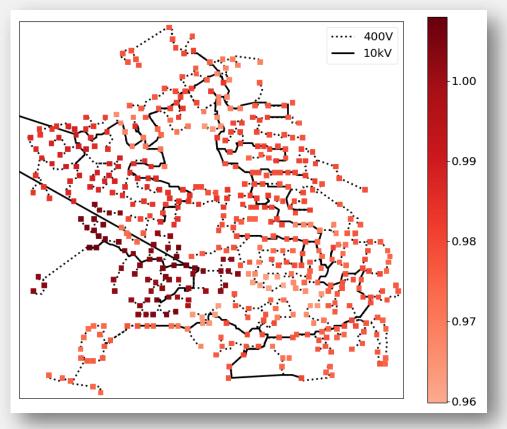

	60kV-10kV-400V			
A multi-voltage level	400 V nodes	6727		
active-distribution network (ADN) model	10kV/400V substations	300		
	60kV/10kV substations	20		
Large share of weather-dependent RES	PV: 25 MW Wind: 107 MW at 10kV-0.4V + 45 MW at 60kV			
Load time-series based on real network data	pprox 1year with 1 hour resolution			
Generation time-series based on meteorological data	pprox 1year with 1 hour resolution			
Flexibility to incorporate additional network assets to investigate performance of ADN	Possible assets to incorporate: CHP, EV, Storage, etc.			

Accepted Paper in IEEE: 'Multi-Voltage Level Active Distribution Network with Large Share of Weather-Dependent Generation'

Aeishwarya Baviskar | aeish@dtu.dk | +4593511921

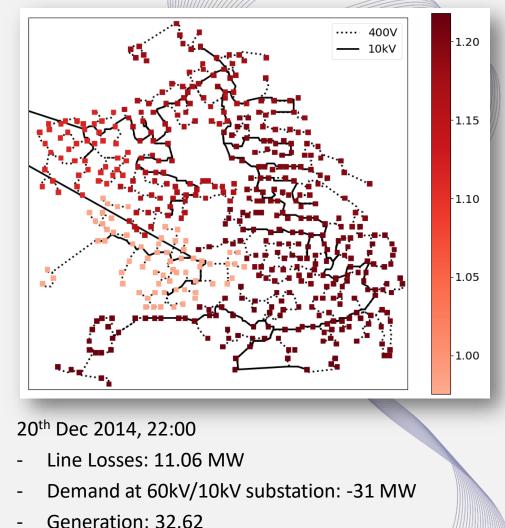
5

60kV-10kV-400V Networks: Topology

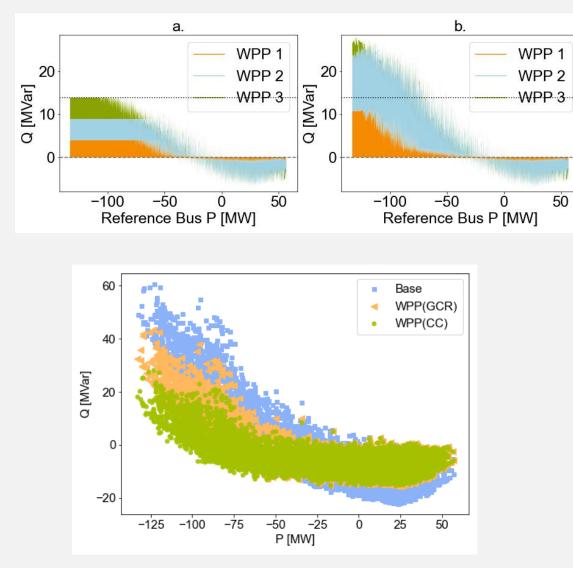

- Minimum installed PV capacity: 1kW
- Minimum installed Wind capacity: 300kW
- PV plants installed at 400V and 10kV
- Wind power installed only at 10kV

6

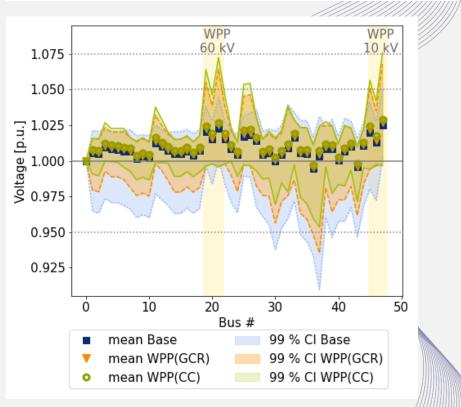
60kV Network


10kV-400V Network at Bus 27

Load flow result: Voltage profile in the network at Bus 46


1st Jan 2015 02:00

- Line Losses: 0.26 MW
- Demand at 60kV/10kV substation: 1.84 MW
- Generation: 0.042


7

Optimizing reactive power from WPPs in the 60kV network

TOTAL ENERGY LOSS AND LOSS REDUCTION IN ALL CASES

	Energy loss	Δ Loss	% Reduction
	[MWh]	[MWh]	-
Base Case	6742.2	0	0
WPP(GCR)	6487.2	255	3.8
WPP(CC)	6423.87	318.33	4.8

8

Aeishwarya Baviskar | aeish@dtu.dk | +4593511921

DTU Wind Energy

Thank you 🕄

Aeishwarya Baviskar Ph.D. Student Technical University of Denmark Email: <u>aeish@dtu.dk</u> Phone: +4593511921