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Introductory note -

Requirements for safety systems for large scale wind turbines (2 1 MW)
H.J. Beurskens

H.J. Beurskens

Requirements for safety systems should be derived from safety
philosophies. Examples of safety philosophies are included in
the Dutch and Danish (draft) safety standards for small and me-
dium scale wind turbines. See Rec. Pract. no. 6.

on the basis of the continuing work on the development of design
and testing criteria and the establishment of national standards
two international programmes are aiming at reaching a common
philosophy.

These programmes are:

* TEA R&D WECS programme, Annex XI, "Recommended Practices
for Wind Turbine Testing & Evaluation, Structural Safety".

* commission of the European Communities (CEC), Directorate
of Energy (DGl17). "Recommendations for a European Wind
Turbine Safety Standard"

The basic requirements on which most parties involved, tend to
agree are:

The wind turbine shall be equipped with at least two, independ-
ently activated and independently operating safety systems,
which are not of the same type.

Each system separately shall be able to limit the.speed to .
acceptable values under normal and extreme operating modes.

One of the safety systems must be able to bring the rotor to a
complete stand still under normal operating conditions.
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The rotor and other rotating components shall be able to be
locked for safe maintenance and inspection.

A point of discussion still is whether to réquire one of the
systems to be aerodynamic or not.

The translation of these requirements for small and medium
size machines to large wind turbines leads to (often prohibi-
ting) increasing cost.

In considering load cases (for definitions, see annex 1) for
small and medium size machines in general only single combina-
tions of extreme external factors and failure operational modes
are considered. It is assumed that this leads to sufficiently
low risk levels for the environment, although this expectation
is not based on analysis.

In order to arrive at a safety philosophy and system require-
ments which are more appropriate for large wind turbines, from
the previous remarks one major discussion item arises:

would it be feasible to derive safety system reguirements (and
load cases) for large wind turbines from statistical analyses
of the occurence of external (extreme) conditions and internal
(failure) modes, rather than applying fixed rules?

In this respect the following subjects are suggested to be
adressed:
- Failure analysis of two independently working systems of

o~ J the same type compared to basically different systems.
bwug;¢ " - Statistical analysis of the occurence of operational
modes and external conditions.
apwﬂwmum& - Are intrinsically safe control systems feasible?

- Is free yaw control allowed with respect to safe
operation?

- Is yawing allowed as a safety action?
- Etc, etc. )

- Review of design and operation experiences with large wind
turbines. (MOD-2, MOD-5, WTS 3 and 4,
KAMEWA/Nissudden turbine, WEG 3 MW turbine, NEWECS-45,
GROWIAN, MONOPTEROS, GAMMA 60, AWEC 60).
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OVER 5 YEARS OF WIND TURBINE TESTING
AT THE NETHERLANDS ENERGY RESEARCH FOUNDATION ECN

Jos Beurskens

Wim Stam



1. Introduction

At some time in 1986, the moment that the ECN test station should have
commemmorated its 5 years existance passed unnoticed.

Looking back it is no surprise that everyone forgot about it.

Last year was the year of establishing a formal certification system for
wind turbines, an essential element in the newly launched Integral Wind
Energy Programme (IPW). This process was very demanding for the ECN
engineers involved. But there is hope for the future: soon there will be
the ceremonial presentation of the fifth so-called Quality Certificate and
the test station workers are inventive in seeking reasons for compensating
the missed party.

While the certification process is well underway, it is now a good time to
dwell on the developments. How did the test station evaluate to its pre-
sent status, what where the highlights from the.past and how will the

test station's future look like?

2. THE GOALS

In 1980 a modest start was made by building two foundations where com-
mercial wind turbines could be installed for quick safety tests. The idea
was to stimulate the use of safe and proven machines and also to assist
the manufacturers in improving their concepts.

The starting phase of the test station coincided with starting up some 10
demonstration projects for decentralized wind energy generation. In order

to minimize the chance of failing projects because of mal-functioning wind



turbines, all machines to be applied were previously tested at the test
site at Petten [1].

From the very beginning the authorities which are responsible for issuing
building licences were also interested in the testing results of wind

turbines because the test station provided the only available independent
information by which an impression could be gained of structural and ope-

rational safety and (later) on acoustic noise emission.

Allthough the test station was set up as a facility for commercial tes-
ting, the actual practice was different. Most of the machines were proto-
types which had not been tested (or even operated) before. Thus, testing
under these circumstances had the character of development assistance to
the manufacturer. Something which was quite understandable, for necessary
facilities and expertise to process statistical data (wind speed, power
output, r.p.m., etc.) with a low degree of coherency were not affordable
for individual industries. These measurements, however, were (and still
are) essential in the development process because no simple and cheap met-
hod exists to evaluate the effect of e.g. the adjustment of the blade

pitch ‘control system on the power-wind speed curve (figure 1).

Because of the availability of all necessary facilities (measurement
equipment, foundations) the test station was also used for the development
and testing of autonomous systems. The autonomous wind diesel systen,
developed by the Technical University of Eindhoven and ECN was tested.

A commercial derivative was tested in Petten under contract of the Con-
sultancy Services Wind Energy for Developing Countries (CWD), before it
was shipped to Cabo Verde.

Presently a 2.2 kW stand alone wind driven ice factory is tested under

contract of an industry.

In order to rationalize the testing in 1983 the procedures were standardi-

zed as much as possible.

. For commercial wind turbines a certification procedure was developed.
See paragraph "Certification”.

. As a development tool a set of measuring packages weas offered. These
measurements could be carried out both on the test field at Petten or at
locations elsewhere [11]. Table I gives a survey of possible measure-

ments.
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Fig. 1. The importance of proper control system adjustment

The original power characteristic was far too low. After a
first adjustment of the passive blade pitch system by the manu-
facturer the curve imporved (middle). After the final adjustment
the power output met the specifications (upper curve).
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Table 1.

1. Power performance measurements 5. Determination of blade and rotor geo-
- yearly energy production metry
- power curve (P-v)
- aserodynamic efficiency (C_-A) 6. Acceptance tests
- power fluctuations P - safety systems
- control characteristics - control systems
- system optimization - specifications

- fuel saving

7. Determination of electrical charac-

2. Mechanical measurements teristics
- mechanical stresses - harmonic distortion
- axial rotor forces - reactive power )
- design assumptions - cut-in phenomena :
|
3. Vibration analysis 8. Application measurements ?
- free vibration frequencies - load pattern i
- resonance phenomena - matching demand and supply
- rotor imbalance - load management

4. Noise measurements




12

In the same year the Association of the Netherlands Municipalities (VNG)
accepted the -Type Testing Report as a means to investigate whether the
wind turbine type concerned met the requirements which were laid down

in the recommended VNG building regulations, being used by most munici-
palities [3]. '

In 1985 a 150 kW rotor shaft driving facility (RAAF) was designed and
constructed in order to support the field tests. This facility which was
taken into operation in December 1985 has proved to be a very helpful de-
vice to test and develop wind energy conversion systems in general and

AWDS-control systems in particular.

At present the situation is essentially the same with the exception that
the certification procedure has been extended to the Quality Certification
Procedure, as a result of the introduction of the Integral Wind Energy
Programme. This procedure is formally independent from investigatioﬁs car-
ried out for development support to the industry.

In conclusion one could say that at present a situation has been reached
which is close to the original ideas by which the test station was foun-
ded. Also the neéessary facilities are available to carry out the desired

tests and investigations (see table II).

3. THE;EVALUATION AND TESTING METHODS

To characterize the system performance of a wind turbine the relation of a
number of parameters as a function of wind speed have to be determined.

As under field conditions, all parameters vary in time, and at a first
glance show only a poor correlation, the measuring methods, its inaccura-
cies and uncertainties have been subject to scientific discussion from the
very beginning. An early conclusion of these discussions is not foreseen

either.

Vibration analysis of the whole structure, the measurement of transient
phenomena and the determination of the quality of electric power produc-
tion are more or less of the classical type and have never been discussed

as intensively as the stationary characteristics.
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Teble II. Test Station Facilities

. Test foundations:
- one for wind turbines up to 10 m rotor diameter;

- four for wind turbines up to approximately 25 m rotor diameter.

. Measurement equipment:

- three foundations are permanently equipped with instrumentation,
signal conditioning electronics and data collection system for the
measurement of electric power, vibration, mechanical stresses etc.;

- four mobile test units for field measurements;

= @ range of measurement instrumentation is available to support the
testing of wind turbines €.g. recorders, telemetry systems for data
transmission, video recorder;

- for some experiments the extensive data evaluation systems of the
25 m HAT research turbine is used.

. Meteo towers:
= wind speed and wind direction are measured with three anemometer
units mounted on different heights to the central test site meteo
tower;

= five transportable meteo towers for field test.

A 150 kW Rotor Shaft Driving Facility (RAAF) for testing wind turbine

drive trains, electrical conversion systems and AWDS-control strategies.
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Another area of intensive discussion and research is the safety issue:
What type of requirements, safety and protection systems have to meet;
what are the design loads? Which subsystems should be designed for a "safe
life" and which for "fail safe" operation? And above all, once you know or
agree on certain criteria, how do you check whether a machine meets these

criteria or not?

A special field of interest has been the development of a method to measu-
re indirectly (and cheaply) the total axial force the rotor exerts on the
tower. This axial force leads to an important design load.

In the following section we will very briefly address the stationary cha-
racteristics, the safety issue and the mechanical measurements.

3.1. Stationary characteristics

The most important characteristic of a wind turbine is its P-v curve, and
the problems connected with the determination of this curve are similarly
faced during determining other characteristics like average axial forcepower
coefficient, electric parameters and torque versus wind speed.

Basic problem is that the definitions of system parameters are based on a
wind turbine which is operated under constant and uniform wind conditions.
In practice, however, the flow is not uniformly distributed over the rotor
plane, the wind varies constantly in both magnitude and direction, and the
flow is turbulent. As the system is non-linear the magnitude of the averaged
value of the power output in principle varies with the averaging period. The
reference wind speed for determining the performance of the rotor is the
undisturbed wind speed taken some distance upstream., By terrain effects and
other instabilities one never knows for sure what the wind speed in the rotor
plane is.

In order to improve the comparability of measurements taken at different
sites and to make these measurements suitable for predicting long term
energy production by combining measured P-v curves and 10-minutes averaged
meteorological data, the International Ene:gy Agency (R&D WECS programme)
in 1982 issued recommended practices for power curve measurements, based on

the so-called method of bins [4]. These have been used at most European
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test stations. The recommendations, however, give answers on a limited

number of questions.

Unanswered questions such as:

. how to deal with machine related conditions?
(blade pitch errors, yawing errors, dirt on blades, hysteresis in the
momentary P-v curve, etc.),

. how to compensate for varying climatological conditions such as air
density, rain and icing in relation to the type of control system?

. what are sensible requirements for wind sensors (calibration, drift,
overspeeding)?

. how to deal with flow distorsion by e.g. the terrain and temperature
effects?

. how to correct for statistical and systematic errors?

. what is the effect of machine dynamics and coherence of signals in
relation to averaging time?

have been subject of common studies by European and Canadian test stations

(7] and by the Standing Group on Recommended Practices of the IEA R&D WECS

programme.

In the near future improved recommended practices will become available.

The IEA will publish a revised version of the recommended practice in the

beginning of 1988. This document will present the best status for the time

being.

ECN leads an EC-project in which the European and Canadian test stations

participate. The project aims at an up to date concept standard for power

curve measurements. The results of this project will appear at the end of

1988.

3.2. Assessment of safety

The demands concerning safety factors, required safety-protection devices,
design philosophies (safe life, fail safe) for different turbine compo-
nents, should be derived from a generally accepted risk level, which is

a product of the probability of failure and the consequences of failure.
Such risk analyses have never been performed except for some specific
large WECS.

From practical experience (both commercial application and tests) an im-

pression has been achieved by which mechanisms the most significant ha-
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zards can be initiated.

The test station has followed the practical - and the only possible - way

of drafting a safety philosophy which was based upon sound engineering

practice, from own experiences and from experiences abroad. These ideas

were adopted by the Netherlands Standard Committee NEC 96 and were incor-

porated in the draft standard NEN 6096.

At this moment structural safety assessment is part of the ECN certification

process and is evaluated by:

- design review with emphasis on design load and the strategy underlying
the safety and protection system;

- function test during which among others failures are simulated;

- inspection of the manufacturing process.

Meanwhile information from sowe research projects comes available which in
the near future might lead to a refinement of safety requirements and eva-
luation methods. These projects are:
= NOW (Netherlands Wind Energy Research Programme) - project on design
criteria for wind turbines, the results now being translated into the
final version of NEN 6096‘[8];
- EC-project on systematic collection and evaluation of accidents and
incidents [6];
- EC-project to draft a European Safety Standard based on the accident
statistics and the existing Dutch, Danish and possibly other stan-
dards.

It has been proposed to the EC to initiate a project on European recommen-
ded methods of assessing the structural and operational safety of wind

turbines.

3.3. Determination of mechanical loads

From the beginning ECN has realised that the most important design aspect
of a wind turbine is the mechanical load spectrum, at same time realising
that reliable data were lacking. Therefore emphasis has been given to the
development of techniques to measure mechanical strains in the construction
components. Especially the measurement of strains in the rotating rotor re-

quires advanced measuring systems, careful calibration procedures and an
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experienced eye.

From the measurement results the wind induced forces and torques can be
calculated and compared with the design assumptions. An example is given
in Fig. 2.

An overview of derived axial rotor force data was used to verify existing

standards or guidelines [12].
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4. CERTIFICATION

The present activities of the test station are largely devoted to certi-
fying machines to be used in the IPW.

The way in which the certification process developed into its present form

is illustrated in figure 3..

The following remarks serve to better understanding of this figure.

The "letter of acceptance” was introduced with the aim to facilitate the
building licence procedures. This letter was nothing more than a declara-
tion by ECN that the wind turbine was considered safe enough to be instal-
led and operated at the ECN compounds.

The fact that during the introduction of the letter of acceptance hardly any
criteria were available, made it necessary to introduce a better procedure,
the moment better criteria became available.

This happened when the Standard Committee NEC 96 produced its first docu-
ments. In 1983 ECN started the type assessment procedure which should lead to
a safety certificate. In 1984 and 1985 the type assessment was started for
several wind turbines. It appeared however that the wind turbines at that
time were not designed according to design rules derived from the draft stan-

dards. As a result the required design information was not available.

With the introduction in 1986 of the IPW the situation changed consider-
ably. A so-called Quality Certificate, issued by ECN, was required in

order to receive investment subsidies. The required documentation could be
provided much easier because certification criteria were available in the
form of (draft) standards.

Already now, but certainly in the near future, the use of the standards is
becoming easier because results from the research project "Design crite-
ria for small wind turbines" [8] are being incorporated in the final version
of the standard NEN 6096.

The Quality Certificate in fact is an extention of the Type Certificate.
Besides safety also the measured energy production is evaluated. Addi-
tionally the acoustic noise production is measured and the results are
annexed to the certificate.

Until now U4 machines were certified. A survey of the present status is
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given in table I1II.
The certification process is controlled by regulations which cover the
following aspects [10]:
- subjects of certification;
- certification criteria;
- certification methods;
- data to be provided by the manufacturer;
- cost;
- publicity;
- accident and incident reporting;
- confidentiality.

The certification procedure can be split up into a theoretical part (de-
sign verification) and a practical test. For the design verification a
complete set of documentation including drawings, description of circuits
and systems, static strength calculations and fatigue analyses is requi-
red.

The practical test consists of inspection (both the manufacturing process
and a wind turbine of the type under certification), function of safety
and control systems, measurement of power production and acoustic measure-
ments. In practice a sharp interaction appears to exist between the theo-
retical and the practical part: test results often lead to changes in the
design assumptions (e.g. in the load spectrum) on one hand and the test
results often can be used to solve bottle necks in the design verification

on the other hand.

5. EXPERIENCES AND FUTURE DEVELOPMENTS

In the passed years over 30 wind turbine systems were tested (see
table IV) on the test site or on other locations. These tests have
led to a large number {over 50) test and evaluation reports. Most of
these reports, of course, are confidential and only available with

written permission of the manufacturer involved.
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I11. Present status of the ECN certification of wind turbines

Wind turbine

Contract

Certification

in progress

Certificate

issued at

Lagerwey 15/75
Bouma 20/160
Trasco 250/22
Bouma 24,5/250
Wenergy M450
Polenko WPS20
Windmaster 25/300
GBO WG-12

Bohes NBK 80/100
Bohes NBK 300
Bohes NBK 600
Berewoud 160.60
Berewoud 220.150
Aerotech 14 PI 50
Aerotech 17 PI 85
Aerotech 23 PI 250
Lagerwey MRT 6x15/75
Wincon M100 Ext
Nordtank NTK 300
Newecs-45

GBO WG-16

GBO WG-18

GBO WG-16/KET
Aiolos 324 B-1.0
Aiolos 185 B-0.5
H-E 1000

H-E 1000 L

HH AN KK NRNKNKNMNRRNKNR

® K

I

KX XAXXX XXX

X X

June 10, 1987
July 9, 1987
Sept. 15, 1987

Aug. 12, 1987
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From those results the following general trends in Dutch wind turbine

technology can be deduced:

- A gradually increasing overall efficiency. During the last 6 years the
performance coefficient calculated from measured P-v curves.

- An improved reliability of safety and control systems which has consi-
derably decreased the number of wind turbine outages.

- Better defined design approaches (load spectrum, accurate calculation
of stresses in major turbine components, fatigue analysis). As a result

the documents are better matched to the certification needs.

For the near future the following trends are foreseen.

- The developments in the U.S., Denmark and in our country show a clear
tendency towards large commercial machines. While in the beginning of
this decade the optimum rotor diameter in terms of energy cost was
10 m, around 1984 16 m, the optimum configuration has a diameter of 20
to 35 m and an installed power between 200 and 500 kW. As the cost of
temporarely installation of such large machines could become prohibitive,
it might become necessary to extend the testing equipment for field
measurements in the near future.

However, looking at the measuring cost only, past experiences have
proven that a test at the test station can be done cheaper and faster
than at other locations.

- As a result of two national projects which aimed at the development of
cost effective designs (for the in crowd: KEWT and FLEXHAT) advanced
concepts begin to appear on the Dutch market. Such a concept is character-
ized by a flexible rotor hub, passive aerodynamic (partial) blade pitch
control and a variable r.p.m. conversion system. Testing these systems
will require more complex measuring procedures. Possibly these develop-
ments might require different safety criteria.

- An extension of the aspects covered by the present certificate is anti-
cipated. The future certificate will also include the assessment of
quality control of the manufacturing process. This is considered the
best way (and probably the only way) to check the structural reliability
of the wind turbine. The value of the certificate for the IPW, managing
authorities, the industry, licensing authorities and potential owners,

will increase by this extension.
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- = The value of the Quality Certificate has for the implementation of wind
turbines in the Netherlands already indicated that it will be a helpful
tool for exporting industries. The well described certification system
gives then an opportunity to offer products of which the quality has
been assessed ané documented by an independent organization.

- As has been illustrated above, certification requires a score of speci-
fic knowhow and facilities (and a good wind regime!). As certification
is a must, the test station cannot be missed in the succesful extension

of the installed wind power.
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External relations

Naturally a test station cannot exist without its external relations:

{nationally:) manufacturers, licensing authorities, governmental authori-

ties etc. and (internationally:) other test stations, the European Commis-

sion and the IEA. It is beyond the scope of this article to describe these

relations and their results in deteil. In order to get some impression we

will confine ourselves to listing the main relations and their purpose.

1.

Participation in Neth. Standard
Committee on safety of wind turbines
NEC 96

Member of International Meetings of
Test Stations (IMTS)

Contractor of the Energy Research

Programme of the European Communities.

Observer to Technical Working Group
IPW of the Association of Utilities
VEEN

Official certification unit for the -

IPW.

Observer to meetings of the Ministry
of Economic Affairs and Managing
Offices PEO and NEOM.

Participant in the IEA Joint Action
on recommended practices for wind
turbine testing & evaluation.

Establishing safety standard
for machines (with D < 20 m)

Informal exchange of information
and experiences. Discussion on
recomasended evaluation methods.

Projects on:

- Administrative procedures for
Certification and Licensing of
Wind Turbines [5]

- Accidents and incidents sta-
tistics [6]

- Power curve calcualtion

- Power curve measurements (ac-
curacy of) [7]

- Comparative tests of anemo-
meters

- Draft performance measurement
standard

- Draft safety standard

Contributing to the model specs
for ordering wind energy systems

f9l.

Advising the Ministry of Econo-
mic Affairs concerning IPW.

Recommended practices on:

- power performance mesasure;
- fatigue characteristics;

- cost evaluation;
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8. Supervision of CWD test station for
water pumps at Almere.

9. Bilateral contacts.

acoustic noise emission;
electromagnetic interference;
safety;

power quality;

terminology.

Providing independent checks on
measurements.

Providing consultancy for set-
ting up testing facilities in
other countries.
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CERTIFICATION OF WIND TURBINES

STATE OF THE ART

Wim Stam
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CERTIFICATION OF WIND TURBINES
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OF WIND TURBINE SYSTEMS

ACTIVITIES:

#*CERTIFICATION

*TESTS ON TEST STATION
#FIELD MEASUREMENTS
*DEVELOPMENT OF STANDARDS
AND PROCEDURES

#QTHER




31

CERTIFICATION AND TESTING
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CERTIFICATION PROCEDURE
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CERTIFICATION PROCEDURE
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CERTIFICATION PROCEDURE

INVESTIGATED ASPECTS:
*SAFETY

-STRUCTURAL INTEGRITY
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CERTIFICATION PROCEDURE
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CERTIFICATION PROCEDURE
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CERTIFICATE APPLICATION
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CERTIFICATION OF WIND TURBINES

ISSUED CERTIFICATES:

LAGERWEY
BOUMA
NEWINCO
TRASCO
BEREWOUD
BOUMA
MICON
NEWINCO
STORK FDO-WES
NCH
NEWINCO

LW 186m/75kwW
20m/160kW
AEROTECH 23PI250
TWS 22m/175kw
WINDVANG 160.60 RWT
24.5m/250kW
M450 (250 kw)
AEROTECH 14PiI50
NEWECS45 (1MW)
WG16m/60kwW
AEROTECH 17PI100

EXPERIENCES:

DURATION

MIN: 2.5 MONTHS
MAX: > 1 YEAR

DEPENDS ON:

#DOCUMENTATION SET
#QUALITY OF DESIGN

#»CONFORMITY OF TEST TURBINE
#TEST RESULTS

*PROTOTYPE OR PRODUCTION TYPE
#ECN-CAPACITY

*MANUFACTERERS ATTITUDE
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EXPERIENCES:

DESIGN CHANGES

»NEW TOWER DESIGN
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»YAW SYSTEM MODIFICATION
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«OTHER ROTOR BLADES

»HUB MODIFICATION

»CONTROL SYSTEM ADAPTIONS

CERTIFICATION OF WIND TURBINES

CONCLUSIONS:

#»CONSISTENT SET OF VERIFICATION
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#»ALL WIND TURBINE TYPES
#INTERACTION THEORY AND PRACTICAL
TEST ESSENTIAL

#»CERTIFICATE REQUESTED BY
INTERESTED PARTIES

»CERTIFICATE IMPROVES QUALITY
#CERTIFICATION 1§ NO OBJECTIVE
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CERTIFICATION OF WIND TURBINES

FUTURE:

#CERTIFICATION OF WIND
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»DEVELOPMENT DETAILED
CRITERIA FOR MW TURBINES

» ADDITIONAL VERIFICATION
OF PRODUCTION PROCES
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SAFETY REQUIREMENTS FOR

LARGE WIND TURBINES
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INTRODUCTION

The Netherlands is one of the countries where a relatively
complete set of safety requirements for windturbines has been
developed. The development of these requirements was based on
the operating experience with small and medium size turbines.
Nevertheless, prototypes of large windturbines have in the past
been required to comply with these same requirements. Looking
back, it can be concluded that this procedure in some instances
has led to unnecessarily expensive design solutions, and
sometimes to safety systems whose effectiveness may be debated.
The following is an attempt to summarize the experiences, and to
suggest some modifications in the requirements so that they will
be better applicable to large turbines.

THE DUTCH REQUIRFMENTS FOR SMALL WINDTURBINES

The essentials of the Dutch safety requirements for small and
medium-size windturbines are shown in fig.l.

Fig. 2 is a schematic presentation of fig.1.

The first 1line of blocks represents the operation without
failures. The system can go from normal operation to a
“"fundamental state" and back again, using its normal control
devices. The "fundamental state" may be anything .from free-
wheeling at full speed, idling at low speed, a full stop, or
parking with the rotor in a predetermined position.

The second and third line of blocks represent the two safety
levels superimposed. On both these levels the decisions and
commands by the system logic are irreversible (all arrows are to
the right), and lead finally to a state where the system may be
blocked for repair. ,

It is usual (though not explicitly required) .to arrange the first
.safety level in such a way that it is the level which leads to a
full stop. According to the existing requirements, the back-up
safety level 1is then allowed to leave the system in a general
fundamental state, which of course should be safe as well, be it
for a limited period.

In the Dutch requirements it is explicitly stated that the actual
implementing systems should be of a different type on the two
levels.
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There are two points open to criticism in the above requirements:
1. According to the specification of 1load conditions in other
paragraphs of the same requirements, the event of grid failure
must be considered as a normal operating condition, due to its
relatively frequent occurrence. To be consistent, one should
therefore also require that Dboth safety levels are independent
from external power (including the sensors, logic circuits and
actuators). If the primary safety level were dependent on
external power supply (which is allowed according to the present
rules !), any grid failure would always activate the back-up
safety level. The case of grid failure would not be safeguarded
against further failures in the mechanical system, which is
unacceptable in view of the frequency of grid failures.

2. No redundancy in the final stopping action after failure iz
required . In practice provisions must be made so that
maintenance personel is able to positively stop and block the
turbine, if it has 'been left in the fundamental state by the
back-up safety system. It could be accepted that such means are
not built in, but take the form of special tools brought in and
temporarily installed by the repair crew.

COMPONENT SHARING

According to the Dutch safety requirements, it is allowed to
have some component sharing between the normal operational level
and the primary safety level. This is schematically indicated in
fig.3. J

The turbine parts which are common to these two levels evidently
cannot include the system logic, since the normal operational
commands ‘are reversible, which is under no condition allowed on
the safety levels. Extreme caution should be taken during the
system design, so that there can be no overruling of safety
actions by the normal controls, e.g. along "hidden" paths in the
software !

The most usual form of component sharing is found in the
'~ mechanical systems to stop or idle the rotor.

Care should nevertheless be taken to make the safety level
independent from external power supply, even in cases where the
normal operational control is dependent on it.

IMPLEMENTATION IN CASE OF SMALL/MEDIUM SIZE TURBINES.

1. Stall-controlled turbines.

The implementation in many types of stall-controlled windturbines
is shown in fig.4.

There 1is component sharing between the operational and first
safety level in the form of a mechanical brake. The brake is
usually spring- loaded (often incorrectly called "fail-safe") so
that the activation does not depend on electrical power supply.

The Dback-up safety level often employs aerodynamic brake
systems, e.g. centrifugally activated blade tips. Such means deo
not have the capability to positively stop the rotor., so that the
back-up leaves the turbine in a fundamental state.

2. Pitch-controlled turbines. :
In the case of pitch-controlled turbines it is often preferred to



44

use ae{odynamic braking both for normal operation as well as on
the ,primary safety level. The reason is that blade feathering is
a smoother way to idle the machine, without 'ble wear of the
system.

As' the primary safety level should function independent from
external power, often hydraulic accumulators are employed to
feather the blades when a failure condition has been detected.

If it 1is wished (even though it is not strictly required) to
realize a full stop on the primary safety level, a mechanical
brake is needed to finalize the feathering action.

The same mechanical brake may be used on the back—up level (but
now from the full speed or even from an overspeed condition)

This is an allowed type of component sharing between the two
safety levels, since no redundancy is required as far as the
final stopping action is concerned. In the layout as described.
redundancy is indeed present until reaching the fundamental
?tate. despite the component sharing between the two safety
evels.

IMPLEMENTATION IN CASE OF NEWECS-WINDTURBINES

Fig.5 shows the steps in the NEWECS development line of
windturbines. The 25 m HAT, NEWECS-25 (300 kW) and NEWECS-45 (1
MW) have Dbeen built as experimental turbines, as steps in a
process of gradual upscaling and gaining practical experience.
The last machine shown in the figure, the NEWECS-55, is a new
project the design of which has recently started. This stretched
version (55 meter, 1,5 MW) of the earlier 1 MW experimental
machine will be designed as a commercial prototype.

NEWECS-25 safety strateqy.

A schematic diagram of the pitch control system of the NEWECS-25
is shown in fig.6. On the left side of the figure the hollow
rotorshaft is indicated, with a concentric blade-feathering
shaft inside. When there is no relative movement between the
rotorshaft and the feathering shaft, the blade pitch remains
constant. If there is a relative rotation, the pitch changes.

For normal control purposes of the windturbine, the desired
relative rotation can be obtained by a set of gears and clutches.
What is important for the present discussion is the brake which
is schematically indicated at the far right of the diagram. This
brake is activated for emergency feathering actions. By the brake
the inner, feathering shaft is fixed with respect to the
turbineframe. As long as the rotor is still in motion, the pitch
angle of the blades is increased further, until the rotor stops
or the fully feathered blade position is reached.

As the brake is spring loaded, no external power is needed for
the feathering.

The principles of the NEWECS-25 safety philosophy are shown in
fig.7. On the level of normal operation and the primary safety
system, feathering is used for idling the rotor. During normal
operation external power is needed, e.g. for the control
computer, and for unfeathering the blade from standstill.
Irreversible idling on the primary safety level does not need
external power, as explained above. ’

The back-up safety level utilizes a mechanical, spring loaded
brake. The same brake is used on the operational and primary
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safety level to get the turbine from idling into a full stop. As
explained above, this type of component sharing is fully allowed
by-the Dutch requirements. In fact, both devices (feathering and
mechanical braking) are always activated at the same time. This
of course does not influence the principles involved.

NEWECS~45 gsafety strategy. :

Fig.8 shows a schematic of the blade feathering system of the
NEWECS-45 1 MW turbine. There is a strong resemblance with the
diagram of fig.6, except that the blade pitch is controlled by a
hydraulic motor working through a differential gear on the
feathering shaft, which is again placed inside the rotorshaft.
The safety feathering follows exactly the same principles as
described earlier in the case of the NEWECS-25.

The safety strategy is different however, as shown in the diagram
of £ig.9. The main reason for departing from the principles
adopted in the smaller NEWECS-25 is found in the mechanical brake
system.
Mechanical brakes are feasible for medium size windturbines, but
become increasingly awkward when the machine size grows. Reasons
are:
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