

INTERNATIONAL ENERGY AGENCY

Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems ANNEX XI

44th IEA Topical Expert Meeting

System Integration of Wind Turbines

Dublin, Ireland, November 2004 Organised by: SEI

Role of Primary and Secondary reserve in managing frequency excursions

Scientific Co-ordination: Sven-Erik Thor FOI, Aeronautics - FFA, 172 90 Stockholm, Sweden

IEA R&D WIND ANNEX XI The Operating Agent

January 12, 2005

TO:

- Participants in IEA R&D Wind Annex XI
- Participants in the meeting
- Other interested parties

RE: Proceedings from Topical Expert Meeting

Dear Colleague,

Please find attached documentation from Topical Expert Meeting #44 "System Integration of Wind Turbines"

At the end of the document there is a summary of the meeting. This summary is also published on the internet, www.windenergy.foi.se/IEA_Annex_XI/ieaannex.html. If you need more copies, please contact Gunnel Backström on E-mail, gunnel.backstrom@foi.se.

Sincerely

S-E Thor

Sven-Erik Thor

Attachment: Proceedings TEM #44

INTERNATIONAL ENERGY AGENCY

Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems ANNEX XI

44th IEA Topical Expert Meeting

System Integration of Wind Turbines

Dublin, Ireland, November 2004 Organised by: SEI

Role of Primary and Secondary reserve in managing frequency excursions

Scientific Co-ordination: Sven-Erik Thor FOI, Aeronautics - FFA, 172 90 Stockholm, Sweden

Copies of this document can be obtained from: Sven-Erik Thor FOI Aeronautics – FFA 172 90 Stockholm Sweden sven-erik.thor@foi.se

.

.

.

CONTENTS

IEA R&D Wind

Topical Expert Meeting #44 Systems Integration of Wind Turbines

		Page
1.	John McCann Introductory Note	3
2.	Kjetil Uhlen Annex XXI: Dynamic models of wind farms for power system studies	7
3	John Mc Cann System Integration Issues	
4	Hannele Holttinen Impact of hourly wind power variations on the system operation in the Nordic countries	<u>25</u>
5.	Poul Sørensen System integration of wind turbines in Denmark	37
6 .	Brian Parsons U.S. and DOE/NREL Activities in Brid Integration and Operational Impacts Analysis	
7.	Ana Estanqueiro System planning and operation with high wind power penetration	55
8	Paul D Hopewell Integration of High Penetration Wind into Electric Power Grids	59
9.	Karsten Burges Wind farms participating in TSO's Power System Management	65
10	Mark O'Malley System Integration of Wind Turbines in Ireland	73
11	Dave O'Connor Generation Mix	83
12	Olimpo Anaya-Lara and Nick Jenkins Control of DFIG Wind Turbines for Power Network Operation Support	89
13	Sanna Uski and Bettina Lemström Long-term dynamics of power systems	97
14	Jane McArdie Dynamic Modelling of Wind Turbine Generators in Ireland	103
15	Ola Carlson Electrical Power and Market Operation with High Wind Power Penetration	115

22	List of Participants and Picture	167
21	Summary of Meeting	163
20	Hannele Holttinen Ideas for new Annex – System integration	161
19	Brian Parsons Integration of Wind and Hydropower Systems	157
18	Lennart Söder On wind power system integration methods	149
17	John Morren Voltage dip ride-through control of wind turbines with doubly-fed induction generator	139
16	Michael C Brower Integrating Wind into the Transmission Grid	

ANNEX XI BASE TECHNOLOGY INFORMATION EXCHANGE

R&D Wind

The objective of this Task is to promote wind turbine technology through cooperative activities and information exchange on R&D topics of common interest. These cooperative activities have been part of the Agreement since 1978.

The task includes two subtasks. The objective of the first subtask is to develop recommended practices for wind turbine testing and evaluation by assembling an Experts Group for each topic needing recommended practices. For example, the Experts Group on wind speed measurements published the document titled "Wind Speed Measurement and Use of Cup Anemometry".

The objective of the second subtask is to conduct joint actions in research areas identified by the IEA R&D Wind Executive Committee. The Executive Committee designates Joint Actions in research areas of current interest, which requires an exchange of information. So far, Joint Actions have been initiated in Aerodynamics of Wind Turbines, Wind Turbine Fatigue, Wind Characteristics, Offshore Wind Systems and Wind Forecasting Techniques. Symposia and conferences have been held on designated topics in each of these areas.

OPERATING AGENT : Sven-Erik Thor FOI, Aeronautics – FFA SE 172 90 Stockholm Sweden Telephone: +46 8 5550 4370 E-mail: trs@foi.se

In addition to Joint Action symposia, Topical Expert Meetings are arranged once or twice a year on topics decided by the IEA R&D Wind Executive Committee. One such Expert Meeting gave background information for preparing the following strategy paper "Long-Term Research and Development Needs for Wind Energy for the Time Frame 2000 to 2020". This document can be downloaded from source 1 below.

Since these activities were initiated in 1978, more than 60 volumes of proceedings have been published. In the series of Recommended Practices 11 documents were published and five of these have revised editions.

All documents produced under Task XI and published by the Operating Agent are available to citizens of member countries from the Operating Agent, and from representatives of countries participating in Task XI.

More information can be obtained from:

- 1. www.ieawind.org
- 2. www.windenergy.foi.se/IEA_Annex_XI/i eaannex.html

IEA R&D Wind - List of Topical Expert Meetings For more informatiuon visit http://www.windenergy.foi.se/ and click on IEA Documents can be obtained from Sven-Erik Thor at trs@foi.se

Ňr	Title	Date	Year	Location	Country
43	Critical Issues Regarding offshore Technology and Deployment	March	2004	Stockholm	Sweden
40	Acceptability in Implementation of Wind Turbines in Social	A damak	0004		0
42	Lanoscapes	Narch	2004	Rolaing	Denmark
41	Environmental issues of offshore wind farms	Sentember	2003	Husum	Germany
40	Power Performance of Small Wind Turbines not connected to	September	2002		Germany
39	the Grid	April	2002	Soria, CIEMAT	Spain
38	Material Recycling and Life Cycle Analysis (LCA)	March	2002	Risø	Denamrk
37	Structural Reliability of Wind Turbines	November	2001	Risø	Denmnark
36	Large Scale Integration	November	2001	Newcastle	UK
	Long term R&D needs for wind energy. For the time frame				·
35	2000 – 2020	March	2001	Petten	the Netherlands
34	Noise Immission	November	2000	Stockholm	Sweden
33	Wind Forecasting Techniques	April	2000	Boulder	Usa
32	Wind energy under cold climtes	March	1999	Helsinki	Finland
31	State of the art on Wind Resource Estimation	October	1998	Lyngby	Denmark
30	Power Performance Assessments	December	1997	Athens	Greece
29	Aero-acoustic Noise of Wind Turbines	March	1997	Milano	Italy
20	State of the art of aeroelastic codes for wind turbines	April	1996		Denmark
21	Lightning protection of wind turbine generator systems	September	1995	Otrecht.	Nethenands
26	and EMC problems in the associated control systems	March	1004	Milan	Italy
20	Increased loads in wind nower stations	Watch	1334	IVIII CIII	naiy
25	(wind farms)	May	1993	Gotherburg	Sweden
24	Wind conditions for wind turbine design	April	1993	Risø	Denmark
	Fatigue of wind turbines, full-scale blade testing				
23	and non-destructive testing	October	1992	Golden, Colorado	USA
	Effects of environment on wind turbine safety				
22	and performance	June	1992	Wilhelmshaven	Germany
	Electrical systems for wind turbines with constant				
21	or variable speed	October	1991	Gothenburg	Sweden
	Wind characteristics of relevance for wind				
20	turbine design	March	1991	Stockholm	Sweden
19	Wind turbine control systems-strategy and problems	May	1990	London	England
18	Noise generating mechanisms for wind turbines	November	1989	Petten	Netherlands
1/	Integrating wind turbines into utility power systems	April	1989	Herndon	USA
16	Requirements for safety systems for LS WECS	October	1988	Rome	italy
15	I S WECS installations	December	1087	Hamburo	Gormany
15	Modelleing of atmospheric turbulence for use in	December	1907	riamburg	Germany
14	WECS rotor loading calculations	December	1985	Stockholm	Sweden
13	Economic aspects of wind turbines	May	1985	Petten	Netherlands
12	Aerodynamic calculation methods for WECS	October	1984	Copenhagen	Denmark
11	General environmental aspects	May	1984	Munich	Germany
	Utility and operational experience from major	,			-
10	wind installations	October	1983	Palo Alto	California
9	Structural design criteria for LS WECS	March	1983	Greenford	UK
	Safety assurance and quality control of LS WECS				
8	during assembly, erection and acceptance testing	May	1982	Stockholm	Sweden
7	Costing of wind turbines	November	1981	Copenhagen	Denmark
6	Realibility and maintenance problems of LS WECS	April	1981	Aalborg	Denmark
_	Environmental and safety aspects	• • •			
5	of the present LS WECS	September	1980	Munich	Germany
	Hotor blade technology with special	A	1000	Steel/hel	Quede -
4	respontion tatigue design	April	1980	Stocknoim Blowing Boold	Sweden
3	Data acquisition and analysis for LS WECS	September	19/9	DIOWING MOCK	USA
2	electricity to the network	Anril	1979	Copenhagen	Denmark
1	Seminar on structural dynamics	October	1978	Munich	Germay

INTRODUCTORY NOTE

IEA Topical Expert Meeting #44

on

Electricity Power System and Market Operation with High Wind Power Penetration

John McCann, Morgan Bazilian, Mark O'Malley

1. CONTEXT FOR MEETING

Wind power penetration is increasing rapidly in many countries worldwide. In the countries currently leading the field in wind energy deployment, wind power capacity penetrations of up to 30% have been attained¹. The interaction of wind energy and the power system has emerged as a potentially significant obstacle to increased penetration. There are issues ranging from operating reserves and frequency control, to the ability of the current grid system to accommodate additional generation. Individual countries with high wind power penetration may currently rely upon interconnection with neighboring countries for provision of ancillary services that support the high local penetration. As power systems and markets are not necessarily delineated by political boundaries, the technical assessment of the effects of high wind penetration upon these may better be carried out on a systemwide, rather than individual country, basis. In some cases the cost (both direct and external) of providing required ancillary services (including various classes of reserve) exhibits an exponentially increasing relationship with wind penetration. Thus, the availability of system ancillary services may be a limiting factor on the rate of deployment of wind power.

In addition to creating environmental benefits, it has been suggested that the nature of wind generation may impact on the operation of electricity systems in such a way as to increase the requirement for reserve. This is because wind generation has a number of physical and technical characteristics that are very different to the conventional generation it displaces. Historically these characteristics may include:

- a lack of inertial response;
- a limited ability to provide reserve;
- intermittent, and potentially unpredictable, electrical output that is highly correlated with that from other windfarms;
- distribution connection and self-dispatch (for smaller windfarms); and
- a varied ability to ride-through system faults.

The impact that wind generation will have on the electricity system as a whole will depend on a number of factors, which include:

- total capacity of wind installed and its proportionate size to the total system;
- size and geographic diversity of individual wind developments;
- type of wind generators installed potentially determined by compliance with the requirements of the Grid Code and connection agreements;
- ability to accurately forecast wind generation;
- overall size of the electricity system;
- size, type and mix of conventional (and pumped storage) generating plant;
- the level, and contractual nature, of interconnection with other electricity systems.

¹ Installed wind capacity as a percentage of installed capacity. It is recognised that there other, perhaps more relevant, metrics to use.

Addressing these issues requires technical knowledge of wind generators and their associated power electronic interfaces, as well as power system operation. Grid codes also need to accommodate the unique operational aspects of wind power explicitly and fairly. It is essential to provide robust solutions to all of these concerns in order to mitigate decreased system security and reliability.

The primary service upon which a high wind penetration will place increased demands will be the provision of reserves. System operators must constantly balance the demand for, and generation of electricity over time horizons from fractions of a second, through minutes, hours, days to weeks and even months ahead. System operators will plan to operate the system based on a forecast of demand and a schedule of planned power station operation. Severe frequency excursions are normally avoided through the use of reserve to limit the extent of a frequency divergence. Frequency excursions can take many forms, from slow-acting inaccuracies in the forecasting of demand, where demand and generation drift out of balance over time, to sudden shocks to the system following the loss of significant generation or demand due to a plant or network fault. Consequently, the provision of reserve has a number of aspects, related to the timeframe over which it is required to operate and the type of incident to which it responds. Hence, reserve requirements range from small short-term frequency variations to load-following over longer time frames, and further include the need to respond to sudden large energy imbalances following the loss of a major generating unit. Figure 1 illustrates the type of reserve that may be utilised following a frequency incident².

Figure 1 - Role of Primary and Secondary reserve in managing frequency excursions

The other system services which increased wind power may place higher demands upon include voltage regulation, reactive power provision, network capacity and network management. The requirements for a majority of these services can generally be met through network reinforcement and additional network resources and while the costs for these may rise as penetration increases, and local limits may be imposed upon wind penetration, the costs are not likely to rise at a rate where they become the primary limiting factor on wind power penetration.

If it is taken as a given that the availability of reserves and back-up capacity will present the ultimate limit on wind penetration, then electricity system and market design and operation to optimize the provision and dispatch of reserves and to obtain adequate back-up capacity should be a focus for attention within jurisdictions where a high wind penetration is planned. In some jurisdictions current system planning criteria or market design incorporate conservative assumptions on the extra demand which wind generation will place upon reserves and the capability of wind generators to provide reserve. In some markets the incentives for investment in new generation capacity may not be

² This figure has been made for the Irish system.

sufficient to bring about the changes to conventional generation mix which may be required to integrate a high wind penetration into a system. It is also apparent that there are no agreed standard methods for analysing the impact of increasing wind penetration upon electricity system operation and reserves provision.

2. BENEFITS OF IEA COOPERATION

While it is evident from the literature that substantial research has been undertaken in the field of wind power integration within power systems, it is also apparent that there is a diversity in approach to the analysis of the impacts of wind power upon electricity systems. This diversity may be a product of the diversity of electricity system characteristics and market designs. Attaining agreement among wind interests and system operators upon a standardized approach or set of approaches may facilitate a steady growth of wind power penetration within electricity systems internationally. It would be of particular benefit if a common position could be reached by wind interests and electricity system operators on the following:

- (i) The methods for assessing power system adequacy and security in systems with a high wind power input.
- (ii) Whether the standard methods for power system analysis, planning and operation will adequately serve in future power systems with high wind penetration.

In view of the varied success to date in achieving unanimity on an approach to integrating wind power within electricity systems, it will be critical to the development of the wind industry that fora are established where specialists in both wind power and power systems operation can debate the issues and reach agreement. One such forum is the IEA Wind R&D Agreement and it is proposed that a Topical Expert Meeting under Annex 11 of this agreement be held to inform participants of the latest developments internationally and to establish whether there is common ground for further work.

3. SOME RELEVANT REFERENCES

A number of national studies have recently been initiated in various jurisdictions. Reports which have been published include:

USA

"Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date" NREL 2004

"Assessing the Impacts of Wind Generation on System Operations at Xcel Energy-North and Bonneville Power Administration", Electrotek Concepts Inc., Bonneville Power Administration and Xcel Energy Inc.

"The Effects of Integrating Wind Power on Transmission System Planning Reliability and Operations", New York State Energy Research and Development Authority

"Assessing Wind Integration Costs with Dispatch Models: A Case Study of PacifiCorp" NREL

Australia

"Intermittent Generation in the National Electricity Market", Market Development

Europe

"Integrating wind power in the European Power Systems – Prerequisites for Successful and Organic Growth" UCTE Position Paper, May 2004

Ireland

"Operating Reserve Requirements as Wind Power Penetration Increases in the Irish Electricity System" Sustainable Energy Ireland 2004

A list of some relevant references that might be useful to the deliberation of the group is also included:

Directive 2001/77/EC of the European Parliament and of the Council of 27th September 2001 on the *Promotion of Electricity Produced from Renewable Energy Sources in the Internal Electricity Market*. Directive 2001/77/EC. 2001. <u>http://europa.eu.int/scadplus/leg/en/lvb/l27035.htm</u>

European Commission, Energy for the Future: Renewable Sources of Energy, White Paper for a Community Strategy and Action Plan. 1997.<u>http://europa.eu.int/scadplus/leg/en/lvb/l27023.htm</u>

Arnott, I. Intermittent Generation in the National Electricity Market, Proceedings of Australian Wind Energy Agency. 2002, Adelaide

Garrad Hassan, Impact of Increased Levels of Wind Penetration on the Electricity Systems of the Republic of Ireland and Northern Ireland: Final Report, 2003, Commission for Energy Regulation/OFREG NI.

Hirst, E., Interactions of Wind Farms with Bulk Power Operations and Markets. <u>www.ehirst.com</u>, 2001

Doherty, R. and M. O'Malley. *Quantifying Reserve Demands Due to Increasing Wind Power Penetration*, Proceedings of Proceedings of 2003 Power Tech Conference. 2003, Bologne, Italy

Hirst, E., Integrating Wind Energy in the Bonneville Power Administration (BPA) Power System. <u>www.ehirst.com</u>, 2002

Outhred, H. Some Operation and Investment Issues for Wind Farms in a Restructured Electricity Industry, Proceedings of ANSZES Proceedings. 2002, Adelaide

Econnect, The Impacts of Increased Levels of Wind Penetration on the Electricity Systems of the Republic of Ireland and Northern Ireland, 2003, Response to CER from Airtricity.

Persaud, S., Wind Power Variability and Power System Operation, 2003, Queen's University: Belfast.

Department of Enterprise Trade and Investment and The Department of Public Enterprise, Final Report on North/South Energy Studies. August 2001. <u>www.energy.detini.gov.uk</u>

Commission for Energy Regulation (CER), CER Letter to ESBNG regarding ESBNG request to extend the limitation of New Wind Connectionshttp://www.cer.ie/docs.asp?Type=Year&Year=2003&Image=images/CERDocs/ce r03310.pdf. CER/03/310, 2003 http://www.cer.ie/cerdocs/cer03310.pdf

Slootweg, J., G., Modelling Wind Turbines for Power System Dynamics Simulations: an Overview. Wind Engineering, 2003, vol 28 issue 1, ppXXX-YYY

McArdle, J., Dynamic Modelling of Wind Turbine Generators and the Impact on Small Lightly Interconnected Grids. Wind Engineering, 2003, vol 28 issue 1 ppBBBB

Causebrook, A. and B. Fox, *Decoding Grid Codes to Accommodate Diverse Generation Technologies*. Wind Engineering, 2003, vol 28 issue ppNNNN

Johnson, A. and H. Urdal, Technical Connection Requirements for Wind Farms. Wind Engineering, 2003 vol 28 issue 1, pp

Smith, P. Impact of Increasing Wind Generation on the Transmission System in the Republic of Ireland, Proceedings of Symposium Neptune CIGRE. 1997

Commission for Energy Regulation Ireland, Funding of Grid Upgrade Development Programme for Renewables, Consultation Paper. CER/03/016, 2003. http://www.cer.ie/cerdocs/cer03016.pdf

Agenda for Annex 21 meeting

- 1. Progress of works (summary by JOT + by individual participants; 5-10 minutes each)
- Agree on benchmark test procedure of wind turbine/wind farm models (draft to be issued)
- 3. Measurement data and model descriptions in database (e-room), incl prospects for new data/measurements to be added
- IEA Annex 21 "white paper" (Dynamic models of wind farms for power system studies - status by IEA Wind R&D Annex 21), EWEC'04 (draft to be issued)
- 5. Report with model descriptions (draft to be issued)
- 6. Public web page (http://www.energy.sintef.no/wind/IEA.asp)
- 7. Planning of further works / consider written progress/status reports by each participant
- Issues for next meeting in Portugal (spring 2005)/further meetings (Netherlands fall 2005)
- 9. Any other issues/information/EU call for proposals

() SINTEF

		ING
Dynam	ic wind farm m	odels – overview
Participant	Tool	Comment
Chalmers	Matlab, PSSE, DigSilent	Model library in Matlab Fixed speed model verified Variable speed model verification engains
ECN/TUD	Matlab	Fixed and variable speed models Models and study reported (ERAO II)
INETI	InPark, Matlab	Fixed speed models
NREL	Vissim, PSSE	Fixed and variable speed models; development and verification of PSSE models in cooperation with various entities
Risø	Matlab, DigSilent	Fixed and variable speed models Matlab model library available at www.iet.aau.dk/Research/wts.htm www.iet.aau.dk/Research/spp.htm
SINTEF	Matlab, PSSE, SIMPOW, PSCAD	Fixed and variable speed models Fixed speed model verified Variable speed model verification ongoing
UCD	Matlab	Fixed and variable speed models
UMIST	Matlab, PSCAD	Fixed and variable speed models DFIG models available at http://www.dgsee.umist.ac.uk/dfig/index.html
VTT	ADAMS, Matlab, PSCAD	Models are developed combining ADAMS, PSCAD and Matlab

Conclusion

- Progress is according to time schedule
- Accelerated efforts is expected to be taken by the Annex to:
 - extend the database to include measurements from var speed turbines
 - develop benchmark test procedures according to target date
 - improve confidence in models and their widespread use ("white paper")
 - Provide recommendations on the choice and use of wind farm models
- The current situation with on the one hand very varying level of confidence and knowledge about wind farm grid interaction modelling, and on the other hand ever larger wind farm projects being planned, the importance and relevance of the Annex works is highlighted

() SINTEF

Secondary reserved	ve req	uirement	s for	wind pov	wer (2)	
 Using 4o for the time s for that the load time s 	series o series m	f (hourly) v ore predic	variatio table t	ns does n han wind	not accoun power	t
- Case Finland 2001 the σ_L to about half,	load pre so the ii	diction: usin ncrease in r	g load eserve - σ.)	prediction or requirement	decreases nt is double	
the amount estimate	eu by sin	npie 4(0 _{NL}	0[/			
	F	inland	De	enmark	Noi	rdic
	F MW	Finland % of peak	De MW	enmark % of peak	Noi MW	rdic % of peal
Stdev of load variations*	F MW 268	Finland % of peak 2.0 %	De MW 273	enmark % of peak 4.3 %	Nor MW 1438	rdic % of peal 2.1 %
Stdev of load variations*	F MW 268	inland % of peak 2.0 % 2.6 %	De MW 273	enmark % of peak 4.3 % 2.9 %	Noi MW 1438	rdic % of pea 2.1 % 1.8 %
Stdev of load variations* Stdev of wind variations*	F MW 268 80	Finland % of peak 2.0 % 2.6 % 2.0 %	273	enmark % of peak 4.3 % 2.9 % 1.2 %	Noi MW 1438 155-210	rdic % of pea 2.1 % 1.8 % 0.8-1.1 %
Stdev of load variations* Stdev of wind variations* Increase in variations, 10 % penetration Increase in variations, 20 % penetration	F MW 268 80 285	Finland % of peak 2.0 % 2.6 % 2.0 % 3.6 %	273 24 94	enmark % of peak 4.3 % 2.9 % 1.2 % 2.4 %	Not MW 1438 155-210 600-800	rdic % of pea 2.1 % 1.8 % 0.8-1.1 % 1.6-2.1 %
Stdev of load variations* Stdev of wind variations* Increase in variations, 10 % penetration Increase in variations, 20 % penetration Increase in reserve, 10 % penetration	F MW 268 80 285 160	Finland % of peak 2.0 % 2.6 % 2.0 % 3.6 % 3.9 %	273 24 94 50	enmark % of peak 4.3 % 2.9 % 1.2 % 2.4 % 2.5 %	Nor MW 1438 155-210 600-800 310-420	rdic % of peal 2.1 % 1.8 % 0.8-1.1 % 1.6-2.1 % 1.6-2.2 %
Stdev of load variations* Stdev of wind variations* Increase in variations, 10 % penetration Increase in variations, 20 % penetration Increase in reserve, 10 % penetration Increase in reserve, 20 % penetration	F MW 268 80 285 160 570	Finland % of peak 2.0 % 2.6 % 2.0 % 3.6 % 3.9 % 7.2 %	273 24 94 50 200	enmark % of peak 4.3 % 2.9 % 1.2 % 2.4 % 2.5 % 4.9 %	Nor MW 1438 155-210 600-800 310-420 1200-1400	rdic % of peal 2.1 % 1.8 % 0.8-1.1 % 1.6-2.1 % 1.6-2.2 % 3.1-4.2 %

1649

. . . .

Ancillary Services Cost Comparison							
Study	Relative Wind Penetration (%)	Regulation \$/MWh	Load Following \$/MWh	Unit Commitment\$ /MWh	Total \$/MWh		
UWIG/Xcel	3.5	0	0.41	1.44	1.85		
PacifiCorp	20	N/A	2.50	3.00	5.50		
BPA/Hirst	7	0.19	0.28	1.00-1.80	1.47-2.27		
PJM/Hirst	0.06-0.12	0.05-0.30	0.70-2.80	N/A	0.75-3.10		
We Energies I	4	1.12	0.09	0.69	1.90		
We Energies II	29	1.02	0.15	1.75	2.92		
Great River Energy I	4.3				3.19		
Great River Energy II	16.6				4.53		
CA RPS Phase I	5	0.17	0	N/A	0.17		
MN DOC/Xcel	15	0.23	0	4.37	4.60		

ntrolling wind farms according to TSO requirements				
Control actions				
Motivation	Implementation			
 Reducing line loading / congestion Increasing system stability 	Curtailment 50% of actual MW capability			
Control voltage in case of low load	Fixed cos ϕ at all WEC's and PCC			
Enabling delivery of MW reserve (P)	50% curtailment			
	to TSO requirements tions Motivation 1. Reducing line loading / congestion 2. Increasing system stability Control voltage in case of low load Enabling delivery of MW reserve (P)			

.

••

Peaking	Cheap to build
	Expensive to run
	Fast start capability
Mid-merit	Wide operational load range
	Reasonably good efficiency across load range
	Reasonably low emissions across load range
	Low start-stop costs – fuel and wear-and-tear
	Low wear-and-tear – large, fast load changes
Base load	Cheap to run
	Expensive to build
	High efficiency at full load
	Low emissions at full load

Responsiveness and Flexibility • Reheat Steam Turbines Reheater time constant • Gas turbines Part-load operation Response to frequency dips • Combined cycles Good efficiency at full load All else bad Already too many Ill-suited

- The existing generation mix?
- New plant additions?

Existing Generation Mix:

Unconventional Solutions to the Challenges of the 70s and 80s

- Open steam turbine valves three times faster
- Shut off bled steam line in a second for power boost
- Stop condensate flow for two minutes
- Open hydro valves eight times faster
- Operate hydro synchronised dewatered with compressed air

Unconventional Solutions to the Challenges of the 70s and 80s (continued)

- Go to peak firing temperature a hundred times faster
- Throttle steam flow vs. sliding pressure operation
- Avoid gas turbines drawing 150 MW for 6 seconds after tripping
- Convert 90% of trips to wind-down of load over 40 seconds
- Keep plant hot offload with insulation and revised procedures
- Halve startup times with intelligent supervisory controls

New Plant Additions: New Generation of Aeroderivative Gas Turbines

- **100 MW**
- Full-load efficiency of 45% better than some combined cycles on the system
- Excellent part-load efficiency profile
- Low emissions
- Very fast starts and good load following capability
- Negligible wear-and-tear from start-stop cycles
- No loss of output during frequency dips
- Half the capital cost of combined cycles if installed on retired power station sites.

	Simulation example
Basic as	ssumptions for the simulated case:
+ Load i	ncreases linearly
- Ac	ctual load increase based on hour to hour consumption in Nordel- ea one autumn morning (\rightarrow total increase 4952 MW = 10 %)
- Co pr	ountry-wise load increase is shared among loads in that country oportional to the initial values of the loads
– "Li	inear" load increase is modelled stepwise (5 s steps)
 Linear 	wind power decrease rate of 50% in 30 min is used
 Addition time 2 	onally a sudden disconnection of 1000 MW wind power at 50 s
	ſ∟.

Status	MW	Cumulativ Total
Connected	226	226
Contracted	604	830
~Applications & Live Offers (4 th November)	2,000+	2,830+

Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks	
-						
And the second second	1.10					
=53	NATIC	ONAL GR	D			

Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks
Bonus		2.3MW	~	x	Single Mass representation
Bonus		1.3MW	~	x	Single Mass representation

	Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks	
	Bonus		2.3MW	1	x	Single Mass representation	Destroy of the other
	Bonus		1.3MW	~	x	Single Mass representation	
1	DeWind	D6	1.25 MW	~	~		
1	DeWind	D8	2 MW	1	~		

	Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks
1	Bonus		2.3MW	1	x	Single Mass representation
2	Bonus	1	1.3MW	1	x	Single Mass representation
3	DeWind	D6	1.25 MW	~	~	
4	DeWind	D8	2 MW	~	~	
5	Enercon	E40	500kW	~	x	Initialisation and Tstep
6	Enercon	E66	1.8MW	~	x	Initialisation and Tstep
7	Enercon	E66	2 MW	1	x	Initialisation and Tstep
8	Enercon	E70	2 MW	1	x	Initialisation and Tstep
365			ANT THE PARTY NAME	date the second second		

	Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks
1	Bonus		2.3MW	~	x	Single Mass representation
2	Bonus		1.3MW	~	x	Single Mass representation
3	DeWind	D6	1.25 MW	~	~	
4	DeWind	D8	2 MW	~	~	
5	Enercon	E40	500kW	~	x	Initialisation and Tstep
6	Enercon	E66	1.8MW	~	x	Initialisation and Tstep
7	Enercon	E66	2 MW	1	x	Initialisation and Tstep
8	Enercon	E70	2 MW	1	x	Initialisation and Tstep
9	Gamesa	G52	850kW	1	x	Tstep
10	Gamesa	G8X	2 MW	1	X	Tstep

NATIONAL GRID
	Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks
1	Bonus		2.3MW	1	X	Single Mass representation
2	Bonus		1.3MW	1	x	Single Mass representation
3	DeWind	D6	1.25 MW	1	1	
4	DeWind	D8	2 MW	1	1	
5	Enercon	E40	500kW	1	x	Initialisation and Tstep
6	Enercon	E66	1.8MW	1	x	Initialisation and Tstep
7	Enercon	E66	2 MW	1	x	Initialisation and Tstep
8	Enercon	E70	2 MW	1	x	Initialisation and Tstep
9	Gamesa	G52	850kW	1	x	Tstep
10	Gamesa	G8X	2 MW	~	x	Tstep
11	GE	TW1.5s	1.5MW	~	1	
12	GE	3.6s	3.6MW	~	x	CP data

NATIONAL GRID

253

	Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks
1	Bonus	F	2.3MW	1	x	Single Mass representation
2	Bonus		1.3MW	1	x	Single Mass representation
3	DeWind	D6	1.25 MW	1	1	1.000
4	DeWind	D8	2 MW	~	~	
5	Enercon	E40	500kW	1	x	Initialisation and Tstep
6	Enercon	E66	1.8MW	~	x	Initialisation and Tstep
7	Enercon	E66	2 MW	~	x	Initialisation and Tstep
8	Enercon	E70	2 MW	~	x	Initialisation and Tstep
9	Gamesa	G52	850kW	~	x	Tstep
10	Gamesa	G8X	2 MW	1	x	Tstep
11	GE	TW1.5s	1.5MW	~	1	
12	GE	3.6s	3.6MW	~	x	CP data
13	NEG micon		600kW	x		ESBNG to Model
14	NEG micon		300kW	x		ESBNG to Model
15	NEG micon		450kW	x		ESBNG to Model
16	NEG micon	NM72	1.65 MW	~	1	NM72 or NM82
17	NEG micon	NM82	1.65 MW	~	1	

NATIONAL GRID

HAT T

M	Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks
1 B	lonus		2.3MW	~	x	Single Mass representation
2 B	lonus		1.3MW	~	x	Single Mass representation
3 D	eWind	D6	1.25 MW	1	~	
4 D	eWind	D8	2 MW	~	~	
5 E	inercon	E40	500kW	~	x	Initialisation and Tstep
6 E	inercon	E66	1.8MW	~	x	Initialisation and Tstep
7 E	nercon	E66	2 MW	1	x	Initialisation and Tstep
8 E	nercon	E70	2 MW	1	x	Initialisation and Tstep
9 G	iamesa	G52	850kW	~	x	Tstep
10 G	lamesa	G8X	2 MW	~	x	Tstep
11 G	E	TW1.5s	1.5MW	1	1	
12 G	E	3.6s	3.6MW	1	x	CP data
13 N	IEG micon		600kW	x		ESBNG to Model
14 N	IEG micon		300kW	X		ESBNG to Model
15 N	IEG micon		450kW	x		ESBNG to Model
16 N	IEG micon	NM72	1.65 MW	~	~	NM72 or NM82
17 N	IEG micon	NM82	1.65 MW	~	1	
18 N	lordex	N80	2.5MW	1	x	Tstep
19 N	lordex	N60	1.3MW	X		

Vestas V27 225kW X ESBNG to Model Vestas V39 600kW X ESBNG to Model Vestas V42 500/600kW X ESBNG to Model Vestas V42 500/600kW X ESBNG to Model
Vestas V39 600kW X ESBNG to Model Vestas V42 500/500kW X ESBNG to Model Vestas V47 660kW ✓ ✓
Vestas V42 500/600kW X ESBNG to Model Vestas V47 660kW ✓ ✓
Vestas V47 660kW ✓ ✓
Vestas V52 850kW V X Issues with FRT in model
Vestas V66 1.75MW 🗸 🗸
Vestas V80 2 MW 🗸 X Issue with the damping of this r
Vestas V90 3 MW 🗸 🗸
Unspecified
Total

ISB NATIONAL GRID

	Manufacturer	Туре	Output	Stage 1 Model available	Suitability for System Studies	Remarks
1	Bonus		2.3MW	~	X	Single Mass representation
2	Bonus		1.3MW	~	x	Single Mass representation
3	DeWind	D6	1.25 MW	1	~	with the second s
4	DeWind	D8	2 MW	~	~	
5	Enercon	E40	500kW	~	X	Initialisation and Tstep
6	Enercon	E66	1.8MW	~	x	Initialisation and Tstep
7	Enercon	E66	2 MW	~	x	Initialisation and Tstep
8	Enercon	E70	2 MW	~	x	Initialisation and Tstep
9	Gamesa	G52	850kW	1	X	Tstep
10	Gamesa	G8X	2 MW	~	x	Tstep
11	GE	TW1.5s	1.5MW	~	~	Service Service and service service of the
12	GE	3.6s	3.6MW	1	X	CP data
13	NEG micon		600kW	X		ESBNG to Model
14	NEG micon		300kW	x		ESBNG to Model
15	NEG micon	Contraction in the second	450kW	X		ESBNG to Model
16	NEG micon	NM72	1.65 MW	1	~	NM72 or NM82
17	NEG micon	NM82	1.65 MW	~	✓	and the second
18	Nordex	N80	2.5MW	1	X	Tstep
19	Nordex	N60	1.3MW	X		
20	Vestas	V27	225kW	X		ESBNG to Model
21	Vestas	V39	600kW	X		ESBNG to Model
22	Vestas	V42	500/600kW	X		ESBNG to Model
23	Vestas	V47	660kW	×	~	the second se
24	Vestas	V52	850kW	1	x	Issues with FRT in model
25	Vestas	V66	1.75MW	1	×	
26	Vestas	V80	2 MW	~	X	Issue with the damping of this model
27	Vestas	V90	3 MW	~	1	
-	Unspecified				•	

Input from a TSO

TSO prefer one single model for wind farms (>10 MW) containing all parameters. It should be possible to choose type of wind power plant when you set up the model i.e. constant/variable speed, pitch/stall control, ac-type, dc/dc-converters...

The model should be delivered in PSS/E data format, ready to use.

The model should be sufficient for studies on:

power system transient and long term stability

power system operation

The model should work with standard time step in PSS/E which is 0.01 seconds.

>Verification of the model by some tests either in laboratory or reality tests.

Measurements and simulation of Alsvik 180 kW wind turbine

> Simulation done by Pablo Ledesma, PSS/E Marcia Martins, DigSilent Abram Perdana, Matlab

Measurements, Torbjörn Thiringer, Tomas Petru

Field measurements and simulations

Conclusions:

- Results show good agreement: similar oscillations, similar amplitude, slightly difference in frequency (measurements shows higher oscillations than the simulations if no damping).
- The differences in the frequency oscillations between the measurements and simulations are due to the inertia (J) of the generator and stiffness (K) of the mechanical shaft.
- The very fast transient at the first moment depends on the time constant. The results are focused in the electromechanical transients not in the electromagnetic transients.
- Model must have 2 masses represented. Using just one lumped model affects the high speed oscillation.

There is a need for validated models of all types of wind turbines and aggregated models for wind farms

SYSTEM INTEGRATION OF WIND TURBINES

November 2004, Dublin, Ireland Hannele Holttinen and Sven-Erik Thor

Background

Wind power penetration is increasing rapidly in many countries worldwide. In the countries currently leading the field in wind energy deployment, wind power capacity penetrations of up to 30% have been attained The interaction of wind energy and the power system has emerged as a potentially significant obstacle to increased penetration. There are issues ranging from operating reserves and frequency control, to the ability of the current grid system to accommodate additional generation. Individual countries with high wind power penetration may currently rely upon interconnection with neighboring countries for provision of ancillary services that support the high local penetration. As power systems and markets are not necessarily delineated by political boundaries, the technical assessment of the effects of high wind penetration upon these may better be carried out on a system-wide, rather than individual country, basis. In some cases the cost (both direct and external) of providing required ancillary services (including various classes of reserve) exhibits an exponentially increasing relationship with wind penetration. Thus, the availability of system ancillary services may be a limiting factor on the rate of deployment of wind power.

In addition to creating environmental benefits, it has been suggested that the nature of wind generation may impact on the operation of electricity systems in such a way as to increase the requirement for reserve. This is because wind generation has a number of physical and technical characteristics that are very different to the conventional generation it displaces.

Summary

The meeting gathered 28 participants, representing Denmark, Finland, Ireland, Italy, North Ireland, Norway, Portugal, Sweden, the Netherlands, UK and USA.

The meeting started with a presentation of the related IEA Annex XXI, Dynamic models of wind farms for power system studies. The following presentations covered both general descriptions of current situations in different regions and more detailed research presentations. Presentations were grouped in the following categories:

- 1. National presentations
- 2. Impacts of large scale on system operation
- 3. Dynamic simulation

List of mentioned topics/questions:

- Smoothing effects over large geographic areas
- How to calculate reserve requirements
- Ride through standards, is this possible
- Cost of integration has to be discussed for all energy sources, not only wind
- Reliable and validated models of wind turbines are required for power system analysis

Summary of discussion of a new annex

The discussion was preceded by a short presentation by Hannele Holttinen, VTT Finland, listing out some possible ideas for the new annex. See last presentation.

System integration of wind power is a large area of research, so the scope should be reduced. This could be done for example by taking only the impacts that require system-wide analyses, which would leave out impacts that are dealt with locally (distribution efficiency, voltage management). The goals could include:

- State-of-the art of research made so far
- Guidelines for the study methods and data used
- Quantifying the impacts of wind power on power system
- Information exchange between the participating countries and institutions

Guidelines could include study methods for stability analyses and reserve needs as well as how to incorporate wind power in grid analysis and energy system models. Rules of thumb that could be used as first step when considering large penetration of wind power in power systems would be useful. The annex should try to come up with quantification of the range of impacts and costs for different power systems (relative to system size, wind power dispersion, amount of flexibility).

The discussion was centred around defining the scope of the annex. Below is a short list of issues brought up in the discussion:

- Reducing the scope of the annex was considered essential.
- High penetration of wind power in the system is interesting. Definition of what is large amount of wind power is also needed (relative to installed generation capacity, consumed energy, interconnection capacity etc.)
- Larger areas are relevant, for example the Nordic system can trade reserves between the countries. System operation issues should be addressed in both the small systems, like Ireland, and the larger interconnected systems.
- Guidelines for input data for studies, especially how wind data is to be used was agreed to be useful
- Guidelines for methodologies for studies was considered more relevant than guidelines for which (commercial) models should be used.
- It should be noted that increasing other forms of energy also involve integration costs.
- Operating impact studies could be one major focus. Actual costs, not so much how the costs are implemented. List of best practices would be useful and possible to come up with (NREL/USA have already started).
- Recommendation on ideal features on market could be given (for in-depth market analyses, IEA group is not very suitable). With the wrong design of the market, the "integration cost" does not correspond to real system costs. The economic limits on wind penetration will depend upon how costs are allocated within a market, but the scope of the annex may become too broad if it includes consideration of market designs for large wind penetration.
- The effects and value of wind forecasting are important, especially for forecast horizon of 4–12 hours ahead. Wind power production forecast techniques as such should not be included in the scope of the proposed annex.

- Mitigation measures like DSM and storage: their role in helping to integrate high penetration of wind power is relevant to take up also in this annex, however, not as much detailed work as in other IEA Implementing agreements.
- This annex could end where the grid studies start. Stability analyses could be part of the annex, depending on for example where the reserves are taken (if reserves from different area, stability should be addressed).
- Limits to wind power penetration: there are no technical limits to how much wind power can be integrated, so the limits come from how much can be integrated at socially acceptable costs. Maximising the energy that can be delivered by wind in a power system is important. The ultimate objective could be to facilitate the highest economically feasible wind energy penetration within electricity power systems worldwide

The links to other ongoing work is very important to take into account in the proposed annex:

- Annex XXI Grid integration where models are tested and verified. Time scale division (second/minute versus 10minutes/hour) is not necessary, as the proposed annex has wider scope than models. Same participants in both two help to make this link work.
- Annex XXIV Wind and hydro: the proposed annex has a broader scope, also thermal systems. Most of the results from wind&hydro annex are relevant to this annex as well. Same participants in both two help to make this link work.
- CIGRE: workgroups do technical assessments, the same work should not be duplicated. System operation good focus in relation to that.
- ETSO link also important, like UWIG in USA (UWIG work will be linked to the proposed annex when USA participates in the annex)
- Other IEA implementing agreements than IEA R&D Wind: DSM, storages. This annex should not look into too detail on DSM and storages. However, their role in helping to integrate high penetration of wind power is relevant to take up also in this annex.

"System operation/ consequences with large amounts of wind power/high wind power penetration" were suggestions for the working name of the proposed annex, as the name should reflect that it is large amounts of wind power and "system operation" was preferred to "system integration". Planning aspect will not be excluded if the name is "operation".

It was decided to form an ad-hoc group to work further on the scope of the annex and make a draft proposal. The group is led by Hannele Holttinen/VTT (hannele.holttinen@vtt.fi) Finland and the following volunteered to participate: Jack Cadogan/DTI, USA; Ana Estanquero/Ineti, Portugal; Karsten Burges/ecofys, Holland; John McCann/SEI, Ireland and Lennart Söder/KTH, Sweden.

TSO participation in this annex was considered highly important and that would also help create a working link between Cigre and annex work.

List of participants								
IFA BAD Topical Expert Meeting	1 on Sustem Integration							
Ireland 8-10 November 2004	g on aystem unegration					-+		
No NAME	COMPANY	ADDRESS 1	ADDRESS 2	ADDRESS 3	COLINTRY		PHONE	E-mail
1 Poul Sørensen	Rise National Laboratory	Wind Energy Department VEA.118	PO Bor 49	DK 4000 Baskilda	Desmark	40	PHONE	
2 Sanna Uski	VTT	Energy Sustaine	Por 1601		Cipland	45	46// 30/3	DOMESSION OF CONTRACT OF CONTRACT.
3 Hannele Hotttinen	VTT	Energy Systems	Box 1601	Fill 00044 VII	Finand	358		
4 Bettine Lemstrico	VTT	Enorme Systems	Box 1001	PIN-02044 VI I	Patiano	358		namere nortinen evit.ti
5 Dave O'Connor	Hibernian Wind Bower, Benrosorting the INFA	Energy Systems	B0X 1601	FIN-02044 VI I	Finland	358		(pestinal.lemstrom.grvn.ti
6 Mark O'Malley	EPC LICD				Iroland			
7 Alan Mullano	ERCUCO	Dopt. Of Electrical Engineering	University/College Dublin		Iroland			mark.omailev Qued.ie
A John Ma Coon	End OCD	Dept. Of Electrical Engineering	University/College Dublin		Ireland			sian.muliane@ee.ucd.ie
O Deud Smith	Sustainable Energy Services,	Sustainable Energy Ireland,	Glasnevin,	Dublin 9,	treland	353	18 082 073	John.McCann@sei.ie
9 Paul Smith	ESBNG	Lwr. Filzwilliam S.	Dublin 2		Ireland	353	17026492	peul.smith@norid.ie
10 Jane McArdie	ESBNG	Lwr. Fitzwilliam S.	Dublin 2	· · · · · · · · · · · · · · · · · · ·	Ireland	353	17027953	iane.mcardie@eirorid.com
11 Dolreann Barry	ENBNG	Lwr. Fitzwilliam St.	Dublin 2		tretand	353	17026039	doireann.barry@norid.ie
12 Giancarlo Scoraoni	GRTN	Strategies Department	Viale M. Pitsudski 92	1 00197 Roma	Italy	39	681654132	ascontoni @ artn.it
13 Shane Rourke	ENBNG	Lwr. Fitzwilliam St.	Dublin 2		Iroland	353	1-7027809	shane.rourke@cirorki.com
14 Lestio Bryans	SONI				N. Ireland			Lestie.Bryans@soni.ltd.uk
15 Kjotil Uhlen	SINTEF-Enery Research	Sem Sälandsvei 11		7465 Trondheim	Norway	47	73 597 494	kletil, uhlen @ sintet.no
16 Ana Estanqueiro	INETI - Depart. de Energias Renováveia	Az. Lameiros à Estrada do Paço do Lumiar		1649 - 038 Lisboa Codex	Portugal	351	21092 4773	ana.estanqueiro @ineti.pt
17 Ota Cartson	Chaimers	inst. för Elteknik	412 96 Göteborg		Sweden	46	31 7721637	ola.carison 9 etteknik.chalmera.se
18 Sven-Erik Thor	FOI, Aeronautics - FFA	Wind Energy Dept.		172 90 Stockholm	Sweden	46	5550 4370	tra Otol se
19 Lennart Söder	Royal inst. of Technology	Elkrafttekniskt centrum	10044 Stockholm		Sweden	46	8790 8906	lennari.soder@ekc.kth.se
20 Johan Morren	Deltt University of Technology	Makatwag 4	2628 CD Detft		theNetherlands	31	152786593	J.Morren 9 ewi.tudelft.nl
21 Kanten Burges	Ecotys by	Postbus 8408	3503 RK Utrecht		theNethorlands			K.Burges@ecofys.de
22 Otimpo Anaya-Lara	Distributed Generation Research Centre	B15, Ferranti Building, UMIST	PO Box 88	Manchester, M60 1QD	UK	44	1 612 004 682	o.anaya-iara O manchester.ac.uk
23 Richard Ford	BWEA	1 Aztec Row	Berners Road	London N1 OPW	UK		02-076891938	richard@bwsa.com
24 Philip Baker	Department of Trade and Industry	1 Victoria St		London SW1H 0ET	UK	- 44	2072152675	philip.baker@dti.gov.uk
25 Jack Cadogan	Dept. of Energy	Enorgy Efficiency and Renewable Energy	1000 Independence Avenue, SW	WASHINGTON, D.C. 20585	USA		(202)5861991	Jack Cadogan @ hg.doe.gov
26 Brian Parsons	National Renewable Energy, Lab	1617 Cole Boulevard	Golden	CO 80401-3393	USA		(303) 384-6958	Brian Parsons Onrai.cov
27 Paul Hopeweil	GE Wind Energy	Building K1, Room 4C26	One Research Circle Niskayuna	NY 12306	USA	1	5183875491	hopeweil@research.ge.com
28 Michael Brower	AWS Truewind LLC				USA			mbrower @ awstruewind.com
29								
Cancellation					· · · · · · · · · · · · · · · · · · ·			
Alan Konnedy	SONI			·····	N Ireland			· · · · · · · · · · · · · · · · · · ·
John Otav Tando	SINTEF-Enery Research	Sem Sålandsvei 11		7465 Trootheim	Noneny	47	73 607 404	Lohn Tando Benerry sinter on
Mustata Kayikci	Distributed Generation Research Centre	B15. Ferranti Building, UMIST	PO Box 89	Manchester MAD 10D	Lac		10.007 484	I WARE THERE WEITER LY . BRINDLING
Paul Gardner	Garrad Hassan & Partners Ltd	2064 Maryhill Board	Glassow G20 0AB				1 410 454 77	
					<u></u>	-44	1419404774	ipaus.garutkir@garaurassan.com
Proceedings also sent to								
Christor Liljegran	Tingstådevågon 34	62033 Tingståde			Sweden			ch.liljegren.cleps@gotlandica.se
-redrik Nortund	SVK	Svenska Krattnät	Box 526	162 15 Vällingby				fredrik norlund Q syk se
			1					I

Hannele Holttinen Ana Estanqueiro

Sanna Uski

Bettina Lemström Paul Smith

Shane Rourke

Jane McArdle Kjetil Uhlen

Paul Hopewell

Richard Ford

Giancarlo Scorsoni

Olimpo Anaya-Lara

Ola Carlson

Johan Morren Karsten Burges Sven-Erik Thor

Jack Cadogan

Poul Sørensen

Dave O'Connor Philip Baker

Brian Parsons Lennart Söder

Mark O'Malley