

INTERNATIONAL ENERGY AGENCY

Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems ANNEX XI

47th IEA Topical Expert Meeting

Methodologies for assessing the cost of (wind) electricity and the methodologies to estimate the impact of research on the cost

Paris, IEA Headquarters, November 2005

Scientific Co-ordination: Sven-Erik Thor Vattenfall AB, 162 87 Stockholm, Sweden

Copies of this document can be obtained from: Sven-Erik Thor Vattenfall AB 162 87 Stockholm Sweden sven-erik.thor@vattenfall.com

For more information about IEA Wind see www.ieawind.org

CONTENTS

IEA R&D Wind Annex XI

Topical Expert Meeting #47

Methodologies for assessing the cost of (wind) electricity and the methodologies to estimate the impact of research on the cost

	Page
1.	Introductory Note to Meeting1
2.	Methodologies for Estimating the Cost of Wind Energy - An IrishPerspectiveEoin McLoughlin
3.	U.S. DOE WHTP Wind Energy Cost of Energy Calculation 11 Ian Baring-Gould, Joe Cohen
4.	Minimizing costs in the electricity generation mix with high shares of wind energy at the long-scale
5.	Basic Cost and Profitability Calculation Model for Wind Power Projects
6.	Calculating the financial gap of offshore wind
7.	Overall economic context of wind energy
8.	Important Considerations for Developing a Support Scheme
9.	How does R&D reduce the cost of wind energy?
10.	Wind Power financials – thoughts on where to look for improved financials
11.	Defining Technology Goals and Tracking Wind R&D Progress
12.	Wind Farm O&M costs
13.	Estimation of O&M costs in financial models
14.	Social Cost-Benefit Analyses of 6000 MW offshore wind at the North Sea 105 Hage de Vries
15.	Summary of Meeting 113
16.	List of Participants and Picture 117

ANNEX XI BASE TECHNOLOGY INFORMATION EXCHANGE

R&D Wind

The objective of this Task is to promote wind turbine technology through cooperative activities and information exchange on R&D topics of common interest. These cooperative activities have been part of the Agreement since 1978.

The task includes two subtasks. The objective of the first subtask is to develop recommended practices for wind turbine testing and evaluation by assembling an Experts Group for each topic needing recommended practices. For example, the Experts Group on wind speed measurements published the document titled "Wind Speed Measurement and Use of Cup Anemometry".

The objective of the second subtask is to conduct joint actions in research areas identified by the IEA R&D Wind Executive Committee. The Executive Committee designates Joint Actions in research areas of current interest, which requires an exchange of information. So far, Joint Actions have been initiated in Aerodynamics of Wind Turbines, Wind Turbine Fatigue, Wind Characteristics, Offshore Wind Systems and Wind Forecasting Techniques. Symposia and conferences have been held on designated topics in each of these areas.

OPERATING AGENT: FOI Executed by: Sven-Erik Thor Vattenfall AB 162 87 Stockholm Sweden Telephone: +46 8 73 969 73 E-mail: sven-erik.thor@vattenfall.com

In addition to Joint Action symposia, Topical Expert Meetings are arranged once or twice a year on topics decided by the IEA RD&D Wind Executive Committee. One such Expert Meeting gave background information for preparing the following strategy paper "Long-Term Research and Development Needs for Wind Energy for the Time Frame 2000 to 2020". This document can be downloaded from source 1 below.

Since these activities were initiated in 1978, more than 60 volumes of proceedings have been published. In the series of Recommended Practices 11 documents were published and five of these have revised editions.

All documents produced under Task XI and published by the Operating Agent are available to citizens of member countries from the Operating Agent, and from representatives of countries participating in Task XI.

More information can be obtained from:

- 1. www.ieawind.org
- 2. www.windenergy.foi.se/IEA_Annex_XI/i eaannex.html

INTRODUCTORY NOTE

IEA Topical Expert Meeting #47

on

Methodologies for estimation of cost of wind energy Ian Baring-Gould, NREL, and Sven-Erik Thor, Vattenfall

"Wind power is often criticized as being economically 'uncompetitive'. Yet the real cost of wind power has decreased dramatically – by 50% over 15 years – and that trend is set to continue.", [1]

1. BACKGROUND

The cost of energy from wind turbines may be estimated in a variety of ways. Additionally, there are a number of different reasons for the development of cost data; to show technical advancements, to compare different technology options, or determine research focus areas. A macro economic approach will require methods that are different from those needed for a private financial analysis, and will possibly generate cost of energy figures not suitable for comparisons. Furthermore, even analyses intended for the same purpose may have different ways for estimating the cost of energy, and thus care should be taken whenever comparing energy cost figures to ensure that the analyses methods have been the same. This, slightly modified, text was taken from the introduction to the IEA Recommended Practice titled "Estimation of Cost of Energy from Wind Energy Systems", published 1994, second edition. This document can be obtained from [2].

As wind turbines become more cost effective and compete directly with conventional technologies, it will become more important to have an accepted method for calculating the expected costs of wind projects and to clearly state general cost of energy figures that can be used by other industries and governmental agencies.

Cost of wind generation depends on many parameters where the local wind situation and the lifetime of the turbine are strong drivers. Investment in capital equipment is the main cost driver, approximately. $1 \notin W$ installed, 80% of which is for the turbine. The scaling factors of the turbine's size, mass production and cost improvement have reduced output-specific investment costs to less than a half over the last 15 years. The potential for further cost reduction becomes more difficult when the wind turbines are becoming more optimized and mature. Yet to be seen are the leap frog steps in technology which may take costs to even lower levels. Additionally, costs can vary quite widely from country to country or region to region based on governmental policy or incentives, land policy, environmental regulations and other parameters that are not directly related to the cost of the wind technology.

The main parameters governing wind power economics includes, for example:

- Investment cost, including auxiliary costs for foundation, grid-connection
- Operation and maintenance cost, including insurance
- Electricity production
- Feed in cost
- Turbine lifetime
- Project financing including structure, depreciation, and taxation.
- Externality costs
- Discount rate

¹ Poul Erik Morthorst and Hugo Chandler, WIND - The cost of wind power, Renewable Energy World, July– August 2004, www.ewea.org/documents/Facts_fiction.pdf

² Copy of document can be obtained from sven-erik.thor@vattenfall.com

The competitiveness of wind power is dependent on the particular market conditions where wind developments are placed. It is generally accepted that wind energy and other renewable energy sources have environmental benefits when compared to conventional electricity generation. But are these benefits reflected in the market price of electricity? And, is conventional power generation charged for the environmental damage caused by polluting emissions? These are questions related to the external costs of energy. A thorough survey of these factors can be found in [3]. Additionally the variable nature of the wind resource requires some additional costs for backup power, variable transmission line loading and forecasting; all of which may place additional costs on the development of wind technologies.

Examples of external costs associated with wind energy are:

- Noise
- Visual impact
- Environmental emissions from production and erection, such as CO₂, NO_x and SO₂
- Environmental emissions from operation, such as oil, grease and debris
- Cost of power reserve margins
- Transmission line loading and capacity

Lastly, as wind technology moves from a primarily research oriented activity to a more mainstream energy source, governmental technology programs are requiring a better understanding of how current research programs are impacting the cost of a technology which is increasingly being driven by research conducted in private corporations. Ongoing research activities in some IEA member countries and new research programs such as the European Union Wind Energy Thematic Network targeting the Seventh Framework Program for R&D will require a more systematic method to assess the impacts of R&D on the COE from wind turbines. In order to defend coordination and further R&D funding, a method to assess these economic impacts may be required.

2. OBJECTIVES

This proposal aims to summon a meeting of experts the objective of which is to review and evaluate the status of research, experiences and activities concerning cost modelling in relation to wind energy development.

Participants in the meeting will present their experience in the field. Topics can be chosen from, but must not be limited to, the items below.

- Cost models
- Cost components and energy production
- Comments on the Recommended Practice on Cost Modelling
- Uncertainties, economy and wind
- Influence on location, on shore or off shore
- Externalities
- Comparisons with other electricity production types
- Use of COE calculations to assess programmatic technical improvements
- Differences between market and technical based COE calculations
- Non-economic methods for comparing different system efficiencies
- Methodologies to estimate the impact of research on the cost

³ Wind Energy the Facts, an analysis of wind energy in the EU-25, EU project 4.1030/T02-007/2002 http://www.ewea.org/06projects_events/proj_WEfacts.htm

3. INTENDED AUDIENCE

Participants will typically represent the following type of entities:

- Universities, research organizations
- Utilities, wind turbine owners
- Investors
- Government reporting agencies

4. TENTATIVE AGENDA

The tentative agenda covers the following items:

- 1. Introduction by host
- 2. Introduction by Operating Agent, Recognition of Participants
- 3. Collecting proposals for presentations
- 4. Presentation of Introductory Note
- 5. Individual presentations
 - Cost models, cost components and uncertainties
 - COE calculations to assess programmatic technical improvements
 - Externalities
 - Comments on Recommended Practice on Estimation of Cost of Energy
 - from Wind Energy Systems
 - The role of R&D on cost
 - Miscellaneous

6.Discussion

7. Summary of meeting

5. OUTCOME OF MEETING

The outcome of the meeting is the proceedings and a plan for future information exchange and work within this area.

Potential outcomes of meeting include:

- An overview of existing methods
- Future research and development needs
- Understanding of methods to determine how new technologies and/or research programs will influence cost
- A decision on whether is necessary to update the Recommended practice on cost modelling is foreseen
- Discussion of other non-economic, technical based methodologies, to assess performance and or efficiencies of different wind power options.
- Determine the need to develop a common framework for the expressing of COE.
- Discussion on expanding the reporting for COE from different countries to counter clams from other energy sectors. Could be combined with a IEA Wind cost assessment document
- Determination of methods to assess cost curve trajectories

Supplement to the introductory note on Methodologies for estimation of cost of wind energy

Long title: Methodologies for assessing the cost of (wind) electricity and the methodologies to estimate the impact of research on the cost.

The second part of the long title above was not discussed to large intent in the original text. Hence the following text is supplied for your reference and consideration.

Researchers, national R&D program managers, wind interest groups, etc would like to:

- substantiate the claim that research does help reduce the cost of (wind) electricity
- come up with numbers that justify the investment in research
- convince (people / the taxpayer) to invest in research.
- quantify the effect of research on the cost of (wind) electricity

Some countries and the EU have RD&D programs that have a target for cost reductions, a method to evaluate research proposals for it's claimed contribution to cost reductions and the expertise to assess those claims.

E.g. NREL in the US and ECN in the Netherlands have methodologies but they probably differ.

The meeting will try to make an inventory of:

- countries with a target for cost reductions in it's RD&D programs
- country methodology to evaluate RD&D proposals for it's claimed contribution to cost reductions

The meeting will try to

- formulate common elements, guiding principles and make recommendations for models to quantify the effect of research on cost reductions
- formulate an answer if it thinks it useful to develop (a) standard methodology(ies) to be able to recommend it for evaluating RD&D proposals.

lized COEs for \$1200/kW Turbine			
Project (IPP)	Balance Sheet	Portfolio Finance	All-Equity
Infance	(Genco)		
7.3	6.4	6.3	8.2
7.3 elized COEs fo	6.4 or \$1200/kW Turbin Balance	6.3 e with Production 1 Portfolio	ax Credit
7.3 elized COEs fo Project (IPP) Finance	6.4 or \$1200/kW Turbin Balance Sheet (GenCo)	6.3 e with Production 1 Portfolio Finance	8.2 ax Credit All-Equity

Assumptions for Four Structures Currently Being Used in Wind Finance

	Project Finance (IPP)	Balance Sheet (GenCo)	Portfolio Finance	All-Equity
Lifetime	20	20	20	20
Debt/Equity	70/30 w/ no PTC 50/50 w/ PTC ²	35/65	50/50 w/ no PTC 45/55 w/ PTC ²	0/100
Debt Rate	7.0%	6.5%	6.5%	n/a
Debt Period	12 yrs	18 yrs	15 yrs	n/a
Debt Rating	BBB	BBB for project and for company	BBB for project and for pool of projects	n/a
Equity Return	17%	13%	13%	13%
Debt Coverage	Minimum of 1.5x; average of 1.8x	Not applicable from lenders' perspective, as they hold claim to all assets; but GenCo management probably wants a minimum of 1.3x	Minimum of 1.5x; average of 1.8x	n/a
Energy Production	100%	100%	100%	100%
Production Tax Credit	Not included in wind program COE; only considered for special analyses	Not included in wind program COE; only considered for special analyses	Not included in wind program COE; only considered for special analyses	Not included in wind program COE; only considered for special analyses
Depreciation	5-year MACRS	5-year MACRS	5-year MACRS	5-year MACRS
Non-Hardware Expenses (soft costs)	Interest during construction; Debt fees; Equity fees; Debt Service Reserve; Working Capital Reserve; Additional developers fees	Interest during construction; Allocation of Home Office overhead; Working Capital Reserve	Interest during construction; Debt fees; Equity fees; Debt Service Reserve; Working Capital Reserve	Interest during construction; Debt fees; Equity fees; Debt Service Reserve; Working Capital Reserve

	CSP	CSP		
	Assumptions (Sargent & Lundy 2002)	Current Wind Assumptions	Adjust Wind Assumptions to Match CSP	
COE		5.3	4.6	
Key Assumptions				
Lifetime	30	20	30	
Return on Equity	11.5	13	11.5	
Debt Rate	6.0	6.5	6.0	
Debt/Equity	60/40	60/40	60/40	

	General Observations
•	The renewable technology cost trends typically show a steep decline from 1980 to the present. Projections show this decline to continue, but at a slower absolute pace as the technologies mature.
•	Historic cost of energy trends reflected in this chart are in broad agreement with the trends published in "Winner, Loser, or Innocent Victim? Has Renewable Energy Performed as Expected?" Renewable Energy Policy Project, Report No. 7, April 1999.
	Technology Specific Notes
•	Wind technology cost projections represent wind power systems in locations with Class 6 resources. Low wind-speed turbine technology is under development, which will make available large amounts of usable wind resources that are closer to transmission. Lower costs will result from design and technology improvements across the spectrum from foundations and towers, to turbine blades, hubs, generators, and electronics.
•	Biomass cost projections are based on gasification technology. Lower costs will result from technology improvements indicated by current pilot plant operations and evaluation, including improvements in feedstock handling, gas processing/cleanup, and overall plant design optimization.
•	Geothermal cost projections are for Flash technology. Cost reductions will result from more efficient and productive resource exploration and characterization as well as from continued improvements in heat exchangers, fluid-handling technologies, turbines, and generators.
•	Solar thermal cost projections are for Parabolic Trough and Power Tower Technologies and are based on a detailed due- diligence study completed in 2002 at the request of DOE. Cost reductions will result from improved reflectors and lower-cost heliostat designs, improved solar thermal receivers, heat exchangers and fluid handling technologies, and turbines and generators, as well as from volume manufacturing.
•	Photovoltaic cost projections are based on increasing penetration of thin-film technology into the building sector. Likely technology improvements include higher efficiencies, increased reliability (which can reduce module prices), improved manufacturing processes, and lower balance of system costs through technology improvements and volume sales.

Blank page

	The costs for the	e scenarios		
	2000 - status quo 2020 - EEG valid	overall generation costs EUR 23,09 Mrd 22,64 Mrd	CO ₂ -emissions t 279,86 Mio 173,86 Mio	compared to 1990 % - 3 - 40
	certificate price: 5 EUR per t	overall generation costs EUR 22,34 Mrd	CO ₂ -emissions t 337,58 Mio	compared to 1990 % + 17
	certificate price: 10 EUR per t	23,95 Mrd	308,11 Mio	+ 7
	certificate price: 30 EUR per t	29,16 Mrd 33 23 Mrd	255,93 MIO 133 94 Mio	- 11
	certificate price: 70 EUR per t	35,78 Mrd	125,79 Mio	- 56
	certificate price: 100 EUR per t	39,47 Mrd	123,33 Mio	- 57
C	Dr. Marcel Krämer / page 16			For Wind

Blank page

	Costs / Volumes	Project: IE	Α					2,60	Diameter, m	115,00
	Investment Costs a	nd Produc	tio	n Volumes at 100% av	ailabili	itv.		m2 / kW	Gross	1349
	Updated:	2005-11-24				Note! At 100))% availahi	lity:	Sold at 100% avail	1133
	Brice level =	ion-05		Full load hours gross	100% -	3500	boure	itty.	00id at 100% avail.	113
		jan-05	-	Tuli load fibuls, gloss,	100 /0 -	1 40 000	CIMIS	•		
	Construction year =	2005		Production,	gross =	140,000	GWN	Comme	ents:	
	1st full operation year =	2006		Park losses:	9,0%	-12,600	Gwn			
	Number of turbines	10		Other losses in the farm:	4,0%	-5,600	GWh			
	Power per turbine, kW	4000		El losses farm - grid:	3,0%	-4,200	GWh			
	Total power, kW	40 0 00	s	old volume at 100% availa	ibility =	117,600	GWh	Note! Ca	lculation for sold volu	me at 100
				Full load hours, net,	100% =	2940	hours			
	Tot, investment cost, ne	et. kSEK:		520 500	kSEK	13 013	SEK / kW			
	Investment support:			-70 000	kSEK	-1 750	SFK / kW	-11.9%	of gross investr	ent cos
	Tot investment cost a	oss kSFK		590 500	kSEK	14 763	SEK / kW	Comme	ante	
	Wind turbines	OSS. ROLIN.		550 500	kSEK	14700	SEK / kW		21102.	
	Wind turbine transportation			30 000	kSEK	750	SEK/kW			
	Offshore construction			40 000	kSEK	1 000	SEK/kW			
	Wind turbines			230 000	kSEK	5 7 5 0	SEK/kW			
	Foundations			100 000	kSEK	2 500	SEK/kW			
	Electrical system			15 000	kSEK	375	SEK / kW			
	Electrical net / grid				kSEK		SEK / kW			
	Cables + transformer station			80 000	kSEK	2 000	SEK / kW			
	Opto Cable			7 000	kSEK	175	SEK / kW			
	Bottom surveys for cable			2 000	kSEK	50	SEK / kW			
	Connection fee to grid			1 500	kSEK	38	SEK / kW			
	Other costs				kSEK		SEK / kW			
	Project development			20 000	kSEK	500	SEK / kW			
1	Project management			15 000	kSEK	375	SEK / kW			
	Third party certification complet	e structure		2 000	kSEK	50	SEK / kW			
A.	Geotechnical surveys			10 000	kSEK	250	SEK / kW			
	Other costs				kSEK		SEK / kW			
	Communication, exhibition, pro-	file activities		3 000	kSEK	75	SEK / kW			
	Interests before Commercial O	peration Start		15 000	kSEK	375	SEK / kW			
X	Contingency			20 000	kSEK	500	SEK / kW			
	Restore costs (p	rice level as abov	/e):	30 000	kSEK	750	SEK / kW	after depi	reciation period	

	Flice Flogiloses	Proj	ect: I	<u>EA</u>																-
7	<u>2005-11-24</u>					öre /	<u>/kW</u>	<u>1</u>												
	Inflation	2%	4.00		4.00	1.00					1.00			4.07	1.00	1.00	1.05	4.07		+
	Inflation development	1,00	1,02	1,04	1,06	1,08	1,10	1,13	1,15	1,17	1,20	1,22	1,24	1,27	1,29	1,32	1,35	1,37	1,40	÷
<i>i</i>	Year	2005	2006	2007	2008	4 2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2
	Electricity	24,0	24,5	25,0	25,5	26,0	26,5	27,0	27,6	28,1	28,7	29,3	29,8	30,4	31,0	31,7	32,3	32,9	33,6	t
	Emission Trade (ETS)	6,0	6,0	6,0	6,0	6,0	6,0	6,1	6,2	6,4	6,5	6,6	6,8	6,9	7,0	7,2	7,3	7,5	7,6	1
	Elcertificates, Main Scenario	30,0	30,6	31,2	31,8	32,5	33,1	33,8	34,5	35,1	35,9	36,6	37,3	38,0	38,8	39,6	40,4	41,2	42,0	ħ
	Environmental bonus offshore	16.0	15,0	14,0	13,0	12,0									_					F
	Environmental bonus on land	9.0	65	4.0	20															Ŧ
	EI + ETS	30,0	30,5	31,0	31,5	32,0	32,5	33,1	33,8	34,5	35,2	35,9	36,6	37,3	38,1	38,8	39,6	40,4	41,2	2
	Sum EI+ETS+Elcertificates Main	60.0	61.1	62.2	63.3	64.5	65.6	66.9	68.3	69.6	71.0	72.5	73.9	75.4	76.9	78.4	80.0	81.6	83.2	2
																				T
	Total Wind power offshore	76,0	76,1	76,2	76,3	76,5	65,6	66,9	68,3	69,6	71,0	72,5	73,9	75,4	76,9	78,4	80,0	81,6	83,2	4
	Total Wind power on land	69,0	67,6	66,2	65,3	64,5	65,6	66,9	68,3	69,6	71,0	72,5	73,9	75,4	76,9	78,4	80,0	81,6	83,2	2
	Risk Example: The Elcertificate	Syste	m cha	nged 2	2013.															t
	Elcertificates, Risk scenario 2013	30,0	30,6	31,2	31,8	32,5	33,1	33,8	34,5	12,0	12,2	12,5	12,7	13,0	13,2	13,5	13,8	14,1	14,3	I
																_				

	Profitability		Projec	t: IEA					Blue ce	lls = Fig	ures imp	orted fro	m the Pri	ce Forec	asts and	Costs f	iles !
	Main scenario																
	Updated:	05-11-24						Comn	nents:					-	-	-	_
	Installed power, kW	40 000			P	ice lev. y	. 0			5 year	s 30%/	20% fis	cal dep	reciatio	n		
	Ass	umed Rest val	ue after de	epreciation	n period =	10,0	MSEK										
	Investment cost, net, MSEK	520,500	Ir	n % of aros	s invest=	1,7%											
	Depreciation period, year	20															
	Inflation	2%			T	ax rate:		Calcul	ation of	Nomir	nal Inter	est Rat	e at diff	erent E	Icertific	ate pro	anos
	Interest Calculated, nominal a. tax	9,0%			_	28%											
	Sold electricity per	year (GWh) =	106	111	113	113	113	113	113	113	113	113	113	113	113	113	113
	Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	Year after start operation	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Sum prices, öre/kWh		76,1	76,2	76,3	76,5	65,6	66,9	68,3	69,6	71,0	72,5	73,9	75,4	76,9	78,4	80
	Income, MSEK / year		81	84	86	86	74	76	77	79	80	82	83	85	87	89	9
	Sum costs, ore/kwn		-13,0	-13,2	-15,7	-15,9	-16,1	-10,3	-10,0	-17,0	-17,3	-20,5	-16,0	-10,4	-16,7	-19,1	-32,
	Gross Profit MSEK/year		-14	-15	61-	-10	-10	-10	-19	-19	-20	-30	-20	-21	-21	-22	-3
	Tax MSEK/year		-19	-20	-19	-19	-16	-16	-16	-17	-17	-15	-18	-18	-18	-19	-1
	Net Profit after tax, MSEK/year		48	50	49	49	40	41	42	43	44	37	45	46	47	48	3
	Fiscal depreciation, MSEK/year		-156	-109	-104	-104	-47	0	0	0	0	0	0	0	0	0	
	Decreased tax, MSEK/year		44	31	29	29	13	0	0	0	0	0	0	0	0	0	
	Cash Flow after tax, MSEK/year	-520,5	91	81	78	78	53	41	42	43	44	37	45	46	47	48	3
	Calculated over 20 years: Present Value after tax (NPV) Profit in % of investment Check: (and acc. cach flow):	<u>11,1</u> 2%	MSEK	240	270	102	120	07		12	24	60	114	160	209	256	20
6	Check: (and acc. cash flow).	-521	-429	-348	-270	-192	-138	-97	-55	-12	31	69	114	160	208	256	29
	Present value of annual cash llow	-521	64 shall be	0 111	01	20	35	25	23	21	20	10	10	10	15	14	1
$\langle $	Rest value calculation:	11,1	STIGIL DC	0													
\setminus	Rest Value a depriper (price year 0)	10.0	MSEK														
1	Pres Value of Rest Value a depriper	27	MSEK	0.5%	ofnetinve	stment											
1	Present Value of NPV+Pest Value	13.8	MSEK	2.7%	of not inve	etmont.											
		10,0	MOLIN	2,770	orneenwe	Sumone.											

		-						
-3	MW turbine rating							
-A	-Average site depth: 12m							
-0	cabling distance offshore substation to onshore	landing: 40km						
	habining distance from apple lending to grid appl	action noint: 1km						
-0	inshore distance from cable landing to grid con	rection point: 1km						
-C	Only minor upgrade required at onshore substati	on						
	COST CENTRE	SHARE OF TOTAL						
	Turbines and ancillaries ¹	51%						
	Foundations, substructures, transition pieces ¹	19%						
	Offshore electrical ¹	9%						
	Substation(s)							
	Array cables							
	Export cables							
	Onshore electrical	2%						
	Installation	11%						
	Foundations and turbines							
	Export and array cabling							
	Other							
	Surveying & construction management	4%						
	Insurance	2%						

	Back-up		
2005-11-30 TOBC			SwedPower

_	Onshore	Offshore		
Investment	1,2 (11)	1,7 (16)	MEUR/MW (MSEK/MW)	
Running costs	10,5 (100)	15,8 (150)	EUR/MWh (SEK/MWh)	
(Starting value. U	Ipgraded with	n 2 % inflatior	ו)	
Full load hours	2 500	3 000		
Capacity factor	29%	34%		

Lar TIO Categories	ge Moderate Small	Cost	Energy Production	O&M Cost	Reliability
	Advanced materials				
	Changed/improved structural/aero design				
Advanced (Enlarged) Rotor	Active controls				
	Passive controls				
	Higher tip speed ratios/lower acoustics				
	Manufacturing methods				
Manufacturing	Lower margins				
	Manufacturing markups				
Deduced Energy Lesson	Health monitoring (SCADA, etc.)				
and Increased Availability	Blade soiling mitigation				
and mereased Availability	Extended scheduled maintenance				
	New Materials				
Advanced Tower	Innovative structures				
Advanced Tower	Advanced foundations				
	Self-erecting designs				
Site Specific	Improved definition of site characteristics				
Design/Reduced Design	Design load tailoring				
Margin	Micrositing				
indi giri	Favorable wind speed distributions and shear				
New Drive Train Concents	Permanent magnet generator				
New Drive Trainconcepts	Innovative mechanical drives				
Advanced Power	Incorporation of improved PE components				
Electronics	Advanced circuit topology				
Learning Curve Effects	Market-driven cost reductions				

Capital Costs Annual En	ergy Produc	ction O&	M Costs Reliabilit
	Probability of Success	-30 -20 -10	+10 +20 +30 +40
Advanced (Enlarged) Rotor TIOs	70 70		
	*		
Manufacturing TIOs	70		
	-		
Reduced Energy Losses and Increased			
Availability TIOs	65 - *		
Advanced Tower TIOs	80		
	80		
	-		
Site-Specific Design/Reduced Design	80 70		
Margin mos	-		
New Drive Train Concept TLOs	80		
new brive main concept ries	80 80		
	80		
Advanced Power Electronics TIOs	100		
	-		
Learning Curve Effects	100		

					LV	VST 8	s DW1	' Sub	contra	icts														s	R&1
Technology Improver (TIO:	nent Opportunities s) Num	Impact: High H Moderate M Low Low Low Low Low Low Low Low Low Low	3	Clipper Windpower - Quantum Turbine	GE Wind - Mult-Megawatt Turbine	Northern Power Systems - Generator drive voltrain development - Direct Drive	Global Energy Concepts - single Stage Drive/Medium Speed Generator	Northern Power Systems - Advanced Power Electronics	Advanced Energy Systems - Independent Blade Pritch Control	Berger/ABAM- Steel/Concrete Hybrid Towers	GEC - Blade Study	TPI - Blade Study		Aerodynamics Model Development	Aerodyn State Space Model Development	Unsteady Separated Row Research	CFD Ae todynamic Analysis (NAU)	IEA Ann ex XX Initiative	Aeroaco ustics Model Development	Rotor Load Control Strategies	Hinged Rotor Technology Assesment	Advantek; Rotor Control CRADA	3 M Blade Coa ing CRADA		Adaptive Structures
Advanced (Enlarged) Rotor	Current Y Total Requi Advanced materials Changedimproved structural Active controls Passive controls	ear Funding red Funding laero design	ubcontracts	5 15 M H	5 15 H H M M	1			м				Development				н	M M M	м	H H M	н	1 1 1	н	88	M
Manufacturing	Manufacturing methods Lower margins Manufacturing markups	00051105	ST & DWT S		н						H M H	M	inced Rotor		_									Blad	
Reduced Energy Losses & Increased Availability	Health monitoring (SCADA et Blade soiling mitigation Extended scheduled mainten	ic) ance	LW		M								Adva										н		М
Advanced Tower TIOs	New Materials Innovative structures Advanced foundations Self-erecting designs									M H M M				M M M	M M M										
Site-Specific Design / Design Margin Reduction	Improved definition of site cha Design load tailoring Micrositing Favorable wind speed distribu	iracteristics utions and shear	r											нн	нн					нц					
	Permanent mannet generator			н		н	н																		

Turbines ex works incl. transport & erection	1000€/ MW	U/
i urbines ex works incl. transport & erection	045	70
T () () () () () () () () () () () () () (815	(49)
I rato-station and main cable to land	270	16
internal grid in wind farm	85	5
	350	21
Design, project management	100	6
Environmental analysis	50	3
Miscellaneous	10	<1
Fotal	1680	≈100%

Production, GWh	calculation basis		Cos	t, SEK	
45		per WTG	per kWh	% of prod	annual
Administration	real, annual	20 000	0,004		200 000
Personnel	real, annual				(
0			0.000		15.000
Communication costs			0,000		13 000
Service Agreement	real, annual				
period I		20 000	0,004		200 000
period II		40 000	0,009		400 000
Spareparts	real	0			(
Maintenance fund	% of revenue		0,005	1,0	225 000
Conico (mocol	real appual				
Service vesser	real, annual	-			,
Insurance	real, annual	50 000	0.011		500.000
			•,••		
Land lease	% of revenue	67 500	0,015	3,0	675 000
Water lease	fixed, annual	0			(
Capacity charge	installed capacity	150 000	0,033		1 500 000
F	real production		0.020		000.000
Energy charge	real production		0,020		900 000
Measuring cost	fixed cost	5 000	0.001		50.000
measuring cost	inted obot	0 000	0,001		00 000
Grid credit	real production		-0,010		-450 000
Property tax	installed capacity	64 000	0,014		640 000
					15.00
Dismantling costs	% of revenue		0,001	0,2	45 000
Contingo nov	x % of ORM costs		0.002	2.5	117.500
conungency			0,003	2,5	117 300
	TOTAL O&M COSTS	-	0.1071		4 817 500
			5,1011		. 511 000
		10			

P & L, Case I

Profit & Loss Statement ('000 SEK)	FY 1	FY 2	FY 3	FY 4	FY 5
Revenues					
Electricity	9 000	9 000	9 000	9 000	9 000
Certificates	13 500	13 500	13 500	13 500	13 500
Environmental Bonus	2 700	2 025	900	0	(
Total Revenues	25 200	24 525	23 400	22 500	22 50
Operating Expenses					
Operations & Maintenance	3 443	3 443	3 643	3 643	3 64
Land Rent	675	675	675	675	67
Insurance	500	500	500	500	50
Total Operating Expences	4 618	4 618	4 818	4 818	4 81
Production - 45 GWb	0.103	0,103	0,107	0,107	0,10

Production, GWh	calculation basis		Cos	t, SEK	
60		per WTG	perkWh	% of prod	annual
Administration	real appual	20.000	0.002		200.000
Administration	ieai, aririuai	20 000	0,003		200 000
Personnel	real, annual				C
Communication costs			0,000		15 000
	and an and				
Service Agreement	real, annual	20,000	0.002		200,000
period I		40 000	0,003		400 000
ponou ii		10 000	0,001		100 000
Spareparts	real	0			C
Maintenance fund	% of revenue		0,005	1,0	300 000
Senicevessel	real annual				0
	real, annual				
Insurance	real, annual	50 000	0,008		500 000
Land lease	% of revenue	90 000	0,015	3,0	900 000
Water lease	fixed, annual	0			0
		-			
Capacity charge	installed capacity	150 000	0,025		1 500 000
Energy charge	real production		0,020		1 200 000
Measuring cost	fixed cost	5 000	0.001		50.000
incusting cost	intod obot	0.000	0,001		00 000
Grid credit	real production		-0,010		-600 000
Property tax	installed capacity	64 000	0,011		640 000
Dismantling costs	% of revenue		0.001	0.2	60,000
planaling coac			-,	-,-	
Contingency	x % of O&M costs		0,002	2,5	129 125
	TOTAL ON COOTO		0.0040		F 404 40F
	TOTAL DAM COSTS	L	0,0916		5 494 125

P & L, Case II

Profit & Loss Statement ('000 SEK)	FY 1	FY 2	FY 3	FY 4	FY 5
Revenues					
Electricity	12 000	12 000	12 000	12 000	12 000
Certificates	18 000	18 000	18 000	18 000	18 000
Environmental Bonus	3 600	2 700	1 200	0	0
Total Revenues	33 600	32 700	31 200	30 000	30 000
Operating Expenses					
Operations & Maintenance	3 894	3 894	4 094	4 094	4 094
Land Rent	900	900	900	900	900
Insurance	500	500	500	500	500
Total Operating Expences	5 294	5 294	5 494	5 494	5 494
Production = 60GWh	0.088	0.088	0.092	0.092	0.092

Conclusions & Recommendations

- O & M costs must be analysed carefully for each investment case
- Difference in wind speed/production can increase or decrease O & M costs by 50 %
- To compare different wind energy projects on a world-wide basis, a harmonised format would simplify the process for different descision makers
- An IEA model for O & M calculations and integration into financial models should be created

17

VIP

	ECN		
	Approach		
	 3 alternativ 	res in 2 scenario's	
	 Alternative Alternative electricity a Alternative 	 1: 6 GW wind offshore in 2020 2: Other renewable options producing the same amount as 6 GW offshore wind would 3: 6 GW wind offshore in 2030 	t of
	 Scenario 1 – Strong – R&D in 	: Strong Europe: climate policy after 2020, resulting in high CO2 prices nportant	
	 Scenario 2 After 20 Technol 	: Global Economy 020 no more climate policy blogical growth high	
	Compare a	Iternatives to reference (zero) alternative	
4	30-11-2005	Energy research Centre of the Netherlands	www.ecn.nl

Zero alternative (reference case)

#ECN
 Approach Decide on the alternative cases and the reference case Calculate e-production, fuel mix, emissions and electricity price Calculate the economic costs Investment cost and maintenance Spare capacity Calculate the economic benefits Avoided investment, fuel and O&M cost Avoided CO2 credits Effects on supply security Calculate the indirect effects Employment benefits Competitive advantage Calculate external effects Emissions of NOx, SOx and PM10 Noise Landscape
12 30-11-2005 Energy research Centre of the Netherlands www.ecn.nl

Blank page

Summary of IEA RD&D Wind – 47th Topical Expert Meeting on

METHODOLOGIES FOR ESTIMATION OF COST OF WIND ENERGY AND THE METHODOLOGIES TO ESTIMATE THE IMPACT OF RESEARCH ON THE COST

November 2005, Paris, IEA Headquarters Tomas Björnsson and Sven-Erik Thor

Background

The cost of wind-generated electricity may be estimated in a variety of ways. Additionally, there are a number of different reasons for the development of cost data, for example:

- Showing technical advancements
- Comparing different technology options
- Determining research focus areas

A macro economic approach requires methods that are different from those needed for a private financial analyst and would possibly generate cost of energy figures not suitable for comparison.

Also, including the effects of noise, visual impact or environmental influence would yield results not comparable with other estimations that do not include such external factors.

Furthermore, even analyses intended for the same purpose may have different ways of estimating the cost of energy, and thus care should be taken whenever comparing energy cost figures to ensure that the same analysis methods have been used.

Objective

The objective of the 47th Topical Expert Meeting was to review and evaluate the status of research, experiences and activities concerning cost modelling in relation to wind energy development.

Furthermore, the meeting aims were to review and discuss the different methodologies used to evaluate and quantify the effect of research on the cost of (wind) electricity.

Questions relevant to the meeting:

- Is it useful to update the Recommended Practice for cost modelling?
- Should common elements, guiding principles and recommendations be formulated for models to quantify the effect of research on cost reductions?
- Is it useful to develop a standard methodology for evaluating RD&D proposals?

Participants/Presentations

A total of 11 participants attended this meeting with representatives from Denmark, Germany, Ireland, Italy, the Netherlands, the UK, the US and Sweden. The participants represented National Research Centres, Investor & Developer Organisations, Consultancy companies and Utilities.

A total of 13 presentations were given on the following topics:

- 1. Methodologies for Estimating the Cost of Wind Energy An Irish Perspective
- 2. U.S. DOE WHTP Wind Energy Cost of Energy Calculation
- 3. Minimizing Costs in the Electricity Generation Mix With High Shares of Wind Energy at the Long-scale
- 4. Basic Cost and Profitability Calculation Model for Wind Power Projects
- 5. Calculating the Financial Gap of Offshore Wind
- 6. The Cost of Offshore Wind Energy
- 7. Important Considerations for Developing a Support Scheme
- 8. How Does R&D Reduce the Cost of Wind Energy?
- 9. Thoughts on Where to Look for Improved Financials
- 10. Defining Technology Goals and Tracking Wind R&D Progress
- 11. Wind Farm O&M Costs
- 12. Methodologies for Estimation of Cost of Wind Energy
- 13. Social Cost-Benefit Analysis of 6000 MW Offshore Wind at the North Sea

Discussion

A discussion was held on two topics:

- Should IEA update the recommended practice on Estimation of Cost?
- How should the cost benefit of R&D proposals/projects be estimated?

Should IEA update their recommended practice on Estimation of Cost?

Cost analyses intended for the same purpose may have different ways of estimating the cost of energy. Including or excluding external factors would yield different results, as would parameter variations of life length, discount rate, including/excluding the cost of the export cable, etc.

With this background, the IEA Recommended Practice entitled "Estimation of Cost of Energy from Wind Energy Systems" was put together, the second edition being published in 1994.

There still exists great difficulty in answering the question of what the cost of wind power really is. Going offshore has added a new dimension of uncertainty in how to answer this question. By updating the recommended practice, it is certain that the meeting results are distributed to all IEA member countries and do not stay within the walls of this meeting.

However, the vast amount of effort required for an update should be taken into consideration, and the Recommended Practice should not be updated unless enough benefits from doing so are seen.

The most significant benefits from updating the Recommended Practice are found to be:

- Using an update as a way of sharing the results of this expert meeting with others
- Being able to determine what the cost of wind power really is

The issue of modelling the cost of wind energy can be split into two separate issues:

- Modelling of the COE in general
- Wind power specific issues

An idea would be to raise the modelling of COE to a higher level than the Wind RD&D working group, allowing input from other energy sources as well. This would enable the IEA RD&D Wind group to focus on the wind specific issues, and the result of this workshop and

the aftermath would not be an update of the Recommended Practice but an entirely new document.

As few significant benefits are found as a consequence of updating the recommended practice, the recommendations to the Executive Committee are:

- Not to update the recommended practice on cost modelling
 - Instead allow the writing of a new document about the cost of wind power in a broader sense
 - Input on what such a paper would include is to be gathered afterwards by circulating a document among the attendants of this meeting
 - Instead prioritise a new annex for evaluating the cost benefits from RD&D programs/projects

Cost Benefits of R&D proposals

Wind power generation has come to a "historical" point where investment cost per MW, and hence the cost per generated kWh, is increasing for new wind turbines. Some reasons for this increase are believed to be:

- The increasing price of raw material, especially for steel
- Turbine manufacturers' focus on meeting order stocks rather than on cost performance (lack of competition)

Current signals on the US market indicate possibilities of future onshore investment levels around 1800 \$/kW.

National support systems with a fixed high tariff or increasing quotas for RES are driving higher cost for the end consumer since the quotas are currently not being met. The high revenue levels for producers of renewable energy are believed not to encourage focus on cost performance for the manufacturers of wind turbines, and as a consequence, the production costs are unlikely to drop in the near future.

Since cost reductions in the immediate to near future may be discouraged by the current support systems in combination with the lack of competition among turbine manufacturers, there is an increased need to focus on:

- RD&D programs for the cost reduction possibilities of components other than turbines
 - Foundations, grid connection, export cable, etc.
 - These cost components make up half the investment cost and are potentially a source of future cost reduction.
- Evaluating the cost benefits of RD&D programs
 - Despite the imminent need for cost reduction, not all countries seem to take this parameter into consideration when evaluating RD&D proposals.
 - A well developed methodology to evaluate RD&D proposals on their ability to contribute to overall wind power cost reduction should yield much more effective RD&D in terms of reducing cost.
 - Inviting turbine manufacturers to take part in the working group may yield insights on where the greatest potential can be found.

As the value of evaluating RD&D proposals is significant, the question may be better dealt with within the framework of a new annex. An annex is a good way of investigating the issue further, due to its simplicity, speed and its way of operating around a specific theme. The annex members will have to find funding themselves - joining the annex is a commitment to supporting and financing the Operating Agent of the Annex.

A list of bullet points will be circulated and a working group will type up a proposal for an annex. The working group will consist of:

- Ian Baring-Gould, National Wind Technology Center, U.S.A.
- Tomas Björnsson, SwedPower AB, Sweden
- Niels Erik Clausen, RISØ National Laboratory Wind Energy Department, Denmark
- Hage deVries, ECN Policy Studies, the Netherlands

The result of the working group will be a 3-5 page proposal submitted to the Executive Committee. The future of the Wind RD&D cost benefit annex will be discussed at the next Executive Committee meeting.

- The process may be accelerated if the proposal is sent out ahead of the Executive Committee meeting in March.
 - All present at this workshop will get a circulating document and will be able to make comments. Everyone is encouraged to contact their country representative to discuss the matter beforehand.
 - Mid-February document ready

The recommendations for the Executive Committee are to:

- Take into consideration the starting of an annex with focus on how to evaluate the cost benefits of RD&D programs.
- Include representatives from WTG manufacturers and industry organisations, such as EWEA, in the working group.

Continuation

A paper will be circulated among the group participants in order to ensure that everyone gets a chance to comment on the recommendations for the Executive Committee and the content of the proposal.

List of participants

IEA R&D Wind Annex XI, Topical Expert Meeting METHODOLOGIES FOR ESTIMATION OF COST OF WIND ENERGY IEA HQ, Paris 29-30 November 2005

E E-mail	775079 niels-erik.clausen@risoe.dk	16-721 marcel. kraemer@forwind.de	576707 peter.tulej@iea.org	nicolai.kirchner@iea.org	Eoin.Mcloughlin@sei.ie	590471 c.fera@fera-co.com	772892 info.vip@vindkraften.se	396672 kenneth.averstad@vattenfall.com	395134 tomas.bjornsson@swedpower.com	969 73 sven-erik.thor@vattenfall.com	564949 devries@ecn.nl	2 9900 jerome.jacquemin@garradhassan.com	ian_baring_gould@nrel.gov			k.rehfeldt@windguard.de	225798 hannele.holttinen@vtt.fi			225790 esa.peltola@vtt.fi			csamaras@andrew.cmu.edu
ЮНА	46	441361	140			9 262	86	87	87	873	224	117 97					3 207			3 207			
8	45	46	33			36	46	46	46	46	s 31	44					356			356	-		
COUNTRY	Denmark	Germany	IEA	IEA	Ireland	Italy	Sweden	Sweden	Sweden	Sweden	theNetherland	ĽK	NSA			Germany	Finland	IEA	IEA	Finland	Italy	NSA	NSA
ADRESS 3	DK-4000 Roskilde	26129 Oldenburg	75739 Paris Cedex 15	75739 Paris Cedex 15								Bristol, BS2 0QD						75739 Paris Cedex 15	75739 Paris Cedex 15				Pittsburgh, PA 15213
ADRESS 2	P.O. Box 49	Marie-Curie-Straße 1	9, rue de la Federation	9, rue de la Federation	Dublin 9	201 21 Milan		162 87 Stockholm	162 16 Stockholm	162 87 Stockholm	1031 CM Amsterdam	Silverthorne Lane	GOLDEN, CO 80401			D-26316 Varel	FI-02044 VTT	9, rue de la Federation	9, rue de la Federation	FI-02044 VTT			5000 Forbes Avenue
ADDRESS 1	Wind Energy Department	Zentrum für Windenergieforschung	Renewable Energy Unit	Renewable Energy Unit	Glasnevin	P.za Cavour 7	101 53 Stockholm	Wind Energy	Box 527	Wind Energy	P.O. Box 37154	St Vincent's Works	1617 Cole Boulevard			Oldenburger Strasse 65	PO BOX 1606	Renewable Energy Unit	Long Term Office	PO BOX 1606			Carnegie Mellon University
COMPANY	Risø National Laboratory	ForWind	IEA	IEA	Sustainable Energy Ireland	Fabbricia Energie Rinnovabili Alternative	VIP	Vattenfall	SwedPower	Vattenfall	ECN	Garrad Hassan & Partners Ltd.	National Renewable Energy Laboratory		distributed to	Deutsche WindGuard GmbH	VTT Processes	IEA	IEA	VTT Processes	Associazione Nazionale Energia del Vento	Princeton Energy Research Institute	Dept. of Engineering and Public Policy
No NAME	1 Niels Erik Clausen	2 Marcel Krämer	3 Peter Tulej	4 Nicolai Kirchner	5 Eoin McLoughlin	6 Cesare Fera	7 Matthias Rapp	8 Kenneth Averstad	9 Tomas Björnsson	10 Sven-Erik Thor	11 Hage de Vries	12 Jerome Jacquemin	13 Ian Baring-Gould		Proceedings will also be c	Knud Rehfeldt	Hannele Holttinen	Nobuyuki Hara	Ulrik Stridbaeck	Esa Peltola	Angelo Todaro	Joe Cohen	Constantine Samara

Participants_Cost.xls

Blank page

Nicolai Kirchner Niels Erik Clausen Jerome Jacquemin Kenneth Averstad Cesare Fera Eoin McLoughlin Tomas Björnsson Marcel Krämer Ian Baring-Gould Matthias Rapp Hage de Vries

Sven-Erik Thor

Missing on photo: Peter Tulej