

INTERNATIONAL ENERGY AGENCY

Implementing Agreement for Co-operation in the Research, Development and Deployment of Wind Turbine Systems Task 11

64th IEA Topical Expert Meeting

WIND CONDITIONS FOR WIND TURBINE DESIGN

December 14-15 2010,

National Institute of Advanced Industrial Science and Technology (AIST), The University of Tokyo and The Japan Electrical Manufacturers' Association (JEMA)

Organized by: CENER

Scientific Co-ordination:

Félix Avia Aranda

CENER (Centro Nacional de Energías Renovables) Urb. La Florida C/ Somera 7-9, 1ª 28023 - Madrid – Spain

Disclaimer:

Please note that these proceedings may only be redistributed to persons in countries participating in the IEA RD&D Task 11.

The reason is that the participating countries are paying for this work and are expecting that the results of their efforts stay within this group of countries.

The documentation can be distributed to the following countries: Canada, Denmark, European Commission, Finland, Germany, Ireland, Italy, Japan, Korea, Mexico, the Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom, United States.

After one year the proceedings can be distributed to all countries, that is January 2012

Copies of this document can be obtained from:

CENER Félix Avia Aranda Urb. La Florida. C/ Somera 7-9, 1ª C.P.: 28023 - Madrid – Spain Phone: +34 91417 5042 E-mail: <u>favia@cener.com</u>

For more information about IEA Wind see www.ieawind.org

International Energy Agency

Implement Agreement for Co-operation in the Research, Development and Deployment of Wind Turbine Systems: <u>IEA Wind</u>

The IEA international collaboration on energy technology and RD&D is organized under the legal structure of Implementing Agreements, in which Governments, or their delegated agents, participate as Contracting Parties and undertake Tasks identified in specific Annexes.

The IEA's Wind Implementing Agreement began in 1977, and is now called the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems (IEA Wind). At present, 24 contracting parties from 20 countries, the European Commission, and the European Wind Energy Association (EWEA) participate in IEA Wind. Australia, Austria, Canada, Denmark, the European Commission, EWEA, Finland, Germany, Greece, Ireland, Italy (two contracting parties), Japan, the Republic of Korea, Mexico, the Netherlands, Norway (two contracting parties), Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the United States are now members.

The development and maturing of wind energy technology over the past 30 years has been facilitated through vigorous national programs of research, development, demonstration, and financial incentives. In this process, IEA Wind has played a role by providing a flexible framework for cost-effective joint research projects and information exchange.

The mission of the IEA Wind Agreement continues to be to encourage and support the technological development and global deployment of wind energy technology. To do this, the contracting parties exchange information on their continuing and planned activities and participate in IEA Wind Tasks regarding cooperative research, development, and demonstration of wind systems.

Task 11 of the IEA Wind Agreement, Base Technology Information Exchange, has the objective to promote and disseminate knowledge through cooperative activities and information exchange on R&D topics of common interest to the Task members. These cooperative activities have been part of the Wind Implementing Agreement since 1978.

Task 11 is an important instrument of IEA Wind. It can react flexibly on new technical and scientific developments and information needs. It brings the latest knowledge to wind energy players in the member countries and collects information and recommendations for the work of the IEA Wind Agreement. Task 11 is also an important catalyst for starting new tasks within IEA Wind.

IEA Wind TASK 11: <u>BASE TECHNOLOGY INFORMATION</u> <u>EXCHANGE</u>

The objective of this Task is to promote disseminating knowledge through cooperative activities and information exchange on R&D topics of common interest. Four meetings on different topics are arranged every year, gathering active researchers and experts. These cooperative activities have been part of the Agreement since 1978.

Two Subtasks

The task includes two subtasks. The objective of the first subtask is to develop recommended practices for wind turbine testing and evaluation by assembling an Experts Group for each topic needing recommended practices. For example, the Experts Group on wind speed measurements published the document titled "Wind Speed Measurement and Use of Cup Anemometry". A document dealing with Sodar measurements are presently under development.

The objective of the second subtask is to conduct topical expert meetings in research areas identified by the IEA R&D Wind Executive Committee. The Executive Committee designates topics in research areas of current interest, which requires an exchange of information. So far, Topical Expert Meetings are arranged four times a year.

Documentation

Since these activities were initiated in 1978, more than 60 volumes of proceedings have been published. In the series of Recommended Practices 11 documents were published and five of these have revised editions.

All documents produced under Task 11 and published by the Operating Agent are available to citizens of member countries participating in this Task.

Operating Agent

CENER

Félix Avia Aranda Urb. La Florida. C/ Somera 7-9, 1^a C.P.: 28023 - Madrid – Spain Phone: +34 91417 5042 E-mail:<u>favia@cener.com</u>

COUNT	RIES PRESENTLY PARTICIPATING IN THE TASK 11						
COUNTRY	INSTITUTION National Resources Canada						
Canada	National Resources Canada						
Denmark	Risø National Laboratory - DTU						
European Commission	European Commission						
Finland	Technical Research Centre of Finland - VTT Energy						
Germany	Bundesministerium für Unwelt, Naturschutz und Reaktorsicherheit -BMU						
Ireland	Sustainable Energy Ireland - SEI						
Italy	Ricerca sul Sistema Energetico - RSE S.p.A.						
Japan	National Institute of Advanced Industrial Science and Technology AIST						
Republic of Korea	POHANG University of Science and Technology - POSTECH						
Mexico	Instituto de Investigaciones Electricas - IEE						
Netherlands	SenterNovem						
Norway	The Norwegian Water Resources and Energy Directorate - NVE						
Spain	Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT						
Sweden	Energimyndigheten						
Switzerland	Swiss Federal Office of Energy - SFOE						
United Kingdom	Uk Dept for Bussines, Enterprises & Regulatory Reform - BERR						
United States	The U.S Department of Energy -DOE						

Blank page

Page

CONTENTS

INTRODUCTORY NOTE

a) Background	VII
b) Topics to be addressed	VIII
c) Expected outcomes	VIII
d) Agenda	IX

PRESENTATIONS

1.	Presentation of Introductory Note1 Dr. Tetsuya Kogaki. (AIST)
2.	Statistical analysis of wind turbine failures. Marketability of new wind
3.	Turbulence characteristics in domestic sites in relation to IEC-6140021NTM model. Sannosuke Tanigaki Wind Energy Corporation. JAPAN
4.	Experimental study of wake effects for complex terrain - Advanced simulation 47 techniques of tropical cyclones, complex terrain and wake effects. <i>Junsuke Murata. Mie University. JAPAN</i>
5.	Simulation of Thunderstorm downburst inflow fields and their influence
6. 7	Numerical simulation of typhoon winds with a mesoscale model
7. 1	Analysis of SODAR Measurements over Complex Terrain in JAPAN
8.	Impact of severe wind conditions for wind turbine design. 111 Hiroshi Imamura. WEIT. JAPAN
9. S	CFD simulations of wake effect in large wind farms121 <i>Stefan Ivanell. Gotland University. SWEDEN</i>

10 Brief Introduction of China Extreme Wind Conditions Survey and research 143 <i>Yu Zhang, China General Certification Center</i>
11 Modelling turbulent typhoon time series
Michael Schmidt and Tanja Muecke. Univ. of Oldenburg. For Wind. GERMANY
12. Typhoon protection system for wind turbines
13. Estimation of Extreme Wind Speed by using Monte Carlo Simulation
of Tropical Cyclone 179
Atsushi Yamaguchi. University of Tokyo. JAPAN
14. Wind Turbine Loads in Simulated Stable and Neutral Boundary Layer
Flow Fields 189
Lance Manuel. University of Texas at Austin. USA

SUMMARY

- a) Participants
- b) Discussion
- c) Future actions under the umbrella of IEA Wind

INTRODUCTORY NOTE

Prepared by Tetsuya Kogaki.

National Institute of Advanced Industrial Science and Technology (AIST)

a) Background

The world's total installed wind generation capacity reached 158.5 GW at the end of 2009, with over 38 GW coming online in 2009 alone, representing a 31.7% annual growth rate of the market. These figures show that there is huge and growing global demand for emissions-free wind power, which can be installed quickly, virtually anywhere in the world [1]. The rapid pace of wind power development worldwide has been supported by economic incentive programs such as Feed-in Tariffs and production tax credits along with supportive policies such as the renewable portfolio standard (RPS) program. However, from the technological standpoint, the continuing development and revision of international standards for wind turbine generation technologies brought about by the IEC 61400 series can also be seen as a major contributor to the rapid growth of wind energy worldwide. For example, wind turbines are classified according to extreme wind speeds and turbulence categories in IEC 61400-1 [2], a document that establishes safety requirements for wind power generation systems. This not only sets safe design requirements, but also allows manufacturers to inexpensively mass-produce and distribute standard wind turbines around the world.

Another aspect of the recent worldwide wind energy market is that the newcomers in wind energy development such as China and India have become a major driving force. Many countries in areas other than Europe and North America, such as Asia, Africa, the Middle East, Latin America and Oceania are now also promoting wind power generation projects. Over the last several decades, as can be seen from the records of global cyclone tracks (e.g., [3], [4]), tropical cyclones have disproportionately attacked East Asia, South East Asia, Oceania, South and Middle America. There are many complex terrains in southern Europe, such as Spain and Greece, the northern part of Italy, East Asia, Middle and South America such as Mexico. High levels of turbulence are anticipated in these areas. It is clear that the wind energy market is now expanding from former areas, where mild wind conditions are expected, to areas where there is a risk of much severer wind conditions.

The question now arises: can the current IEC 61400-1 standards for wind turbine design, which were compiled assuming moderate wind conditions, still apply to areas that have tropical cyclone attacks and/or high turbulence caused by complex terrain? Japan has a good deal of experience of problems related to typhoons and high turbulence levels. A statistical investigation of failures of wind turbine generator systems conducted in Japan has revealed the most significant causes of failure to be strong winds associated with typhoons and lightning. On the other hand, proving that high turbulence is the main cause of failure is more difficult than for other types of damage; however, in some cases, high turbulence caused by complex terrain has been clearly the main cause of wind turbine failure. When severe wind conditions are anticipated, Class S wind turbines are needed. However, in the current wind turbine market, there are almost no turbines designed according to Class S design requirements that can cope with the severe wind conditions

characteristic of tropical cyclones and complex terrain. The severe wind conditions caused by tropical cyclones and complex terrain may have to be treated as standard wind conditions in the next edition of IEC 61400-1, to permit the expansion of the wind energy market while at the same time securing the safety and reliability of wind turbine generation systems at reasonable cost.

At the IEC TC88 meeting held in Boulder, USA, last March, revisions to IEC 61400-1 were proposed, and the resumption of MT01 activities was decided. The wind conditions characteristic of tropical cyclones, complex terrain and wakes are included in the agenda for revisions of IEC 61400-1. The specific drawing up of the requirements of wind conditions will be discussed at IEC TC88 MT01, which will begin soon; however, severe wind conditions have not been fully taken into account, since they are still at the R&D stage. Discussing and sharing information on unclear wind conditions at the Topical Expert Meeting of IEA Wind Task 11 is therefore of great importance, since it is expected to deliver safer and more reliable next-generation wind turbine design.

b) Topics to be addressed

The main objective is to hold a meeting to discuss and gather information on:

- Severe wind conditions caused by complex terrain, wake effects, and tropical cyclones such as typhoons and hurricanes
 - High turbulence, high angle of flow inclination, extreme wind speeds, extreme direction changes, etc.
- Impact of severe wind conditions on wind turbine design
 - Fatigue loads and ultimate loads
- Advanced simulation techniques of tropical cyclones, complex terrain and wake effects
- Statistical analysis of extreme wind conditions
- Advanced assessment techniques for site-specific wind conditions
- Definition of complex terrain and terrain complexity indicators
- Definition and marketability of new wind turbine classes, new turbulence categories and new wind models to cover severe wind conditions

c) Expected outcomes

One of the goals of the meeting will be to gather existing knowledge on the subject and come up with suggestions and recommendations on how to proceed with future developments. Based on the above, a document will be compiled, containing:

- Presentations by participants
- A compilation of the most recent information on the topic
- Main conclusions reached in the discussion session
- Definitions IEA Wind RD&D's future role in this issue

d) Agenda

Tuesday, December 14th

- 9:00 Registration. Collection of presentations and final Agenda
- **9:30** Introduction by Host Dr. Kadoguchi, Deputy Director of ETRI, AIST
- **10:00** Introduction by AIE Task 11 Operating Agent. Recognition of Participants Mr. Felix Avia, Operating Agent Task 11 IEAWind R&D
- **10:20** Introduction of Attendees.
- **10:30 Presentation of Introductory Note** Dr. Tetsuya Kogaki. (AIST)

1st Session Individual Presentations:

- **11:00** Statistical analysis of wind turbine failures. Marketability of new wind turbine classes *Hikaru Matsumiya, HIKARUWIND Lab. Ltd. JAPAN*
- **11:30** Turbulence characteristics in domestic sites in relation to IEC-61400 NTM model Sannosuke Tanigaki Wind Energy Corporation. JAPAN
- •12:00 Lunch

2nd Session Individual Presentations:

- **13:30** Experimental study of wake effects for complex terrain Advanced simulation techniques of tropical cyclones, complex terrain and wake effects *Junsuke Murata. Mie University. JAPAN*
- **14:00** Simulation of Thunderstorm downburst inflow fields and their influence on wind turbine loads Lance Manuel. University of Texas at Austin. USA
- **14:30** Numerical simulation of typhoon winds with a mesoscale model *Teruo Ohsawa. Kobe University. JAPAN*
- **15:00** Analysis of SODAR Measurements over Complex Terrain in JAPAN. *Hiroshi Kubo, ITOCHU Techno-Solutions Corporation. JAPAN*
- 16:00 Adjourn

18:30 - 20:00 Dinner (Splitting the bill. About 5,000 JPY)

Wednesday, December 15th

3rd Session Individual Presentations

- **09:30 Impact of severe wind conditions for wind turbine design** *Hiroshi Imamura. WEIT. JAPAN*
- **10:00 CFD simulations of wake effect in large wind farms** Stefan Ivanell. Gotland University. SWEDEN
- **10:30 Brief Introduction of China Extreme Wind Conditions Survey and research** *Yu Zhang, China General Certification Center*
- **11:00 Modelling turbulent typhoon time series** Michael Schmidt and Tanja Muecke. Univ. of Oldenburg. For Wind. GERMANY
- **11:30 Typhoon protection system for wind turbines** Niels Kjaer Launtsen and Morten Sloth. VESTAS. Denmark

•12:00 Lunch

- **13:30 Estimation of Extreme Wind Speed by using Monte Carlo Simulation of Tropical Cyclone** Atsushi Yamaguchi. University of Tokyo. JAPAN
- **14:00 Wind Turbine Loads in Simulated Stable and Neutral Boundary Later Flow Fields** Lance Manuel. University of Texas at Austin. USA
- 14:30 Discussion
- 15:15 Summary of Meeting
- 15:30 Short Technical Tour (the University of Tokyo)
- 17:00 End of the meeting

Thursday, December 16th

Optional Technical Tour

13:00 Meeting at the gate of the University of Tokyo "Todaiguchi" in front of the Komaba-Todaimae station of Keio Inokashira line

13:00 - 14:30 Bus from the Univ. of Tokyo to Mitsubishi Heavy Industries Yokohama Machinery Works

14:30 - 17:00 Visit at Mitsubishi Heavy Industries WT manufacturing facility and MWT-102-2.4 demonstration wind turbine

17:00 - 18:30 Bus to the Univ. of Tokyo

Blank page

PRESENTATIONS

National R&D Project in Japan - #1 Project for Establishing Wind Power Guidelines for Japan (FY2005-2007) Achievements and outcomes
 Simultaneous wind and load measurements Extreme wind speed map Database on extreme wind speed Guidelines for Assessment of site specific conditions Criteria for choice of machines "suitable for the site" etc.
Courtesy of NEDO NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST: 11

National R8	D F	roje	ect in	Jap	an -	#1		AIST
Project for Establis	hing W	/ind Po	ower Gu	ideline	es for J	lapan (F	Y2005-	-2007)
ITEM	Site A	Site B	Site C	Site D	Site E	Site F	Site G	IEC (IA)
Terrain complexity	Small	Large	Medium	Large	Small	Medium	Small	Standard
Height of evaluation	60m	30.5m	68m	37m	65m	35.3m	35m	Hub Height
Reference wind speed, $V_{\rm ref}$	66m/s	79m/s	37-53m/s	73m/s	42m/s	51-72m/s	(83m/s)	50m/s
		A	٠	A	•	A	(▲)	
Annual average wind speed, V_{ave}	•	•	•	•	•	•	•	10m/s
Turbulence intensity,	0.18	0.18	0.18	0.21	0.22	0.23	0.22	0.16
I _{ref}	٠	٠	٠	٠	٠	A	A	
Flow inclination angle	6.6	7	10.4	16	0	2.1	1.4	
[deg]	•	٠	•	•	•	•	•	ŏ
Wind share power law exponent, α		•	•	٠	•	•	•	0.2
Evaluation: • with	nin IEC(IA	A), 🔶 part	tially excee	d IEC 🔺	mostly ex	ceed IEC		
Courtesy of NEDO	NATIONAL INC	ADVAN	CED INDUSTRIAL	SCIENCE AND	TECHNOLOGY	AIST:		13

Since 2004, NEDO's Failure Investigation Project has send questionnaires to all wind power developers and the related organizations to inquire all severe wind turbine failures/accidents/troubles <u>that longed more than 3 days</u> under out of serves. (Definition)

In 2009,

- Number of objected turbines was 1,517 with 1,861 MW.
- This corresponds to 329 wind power plants operated by 183 developers.
- The respondents were 54 % of wind turbines in capacity.

Table 1 Definition of Topographical Classes			Classification	Classification Defin			nition
			Hills/Mountain	Hills/Mountains Complex terrain with an average greater than 10 %		an average slop	
	Flat Inland Areas	Gn tha	Gnerally flat areas with a distance le than 1 km from the closest coast line		vith a distance longer closest coast linme		
	Coastal Areas	s Are fror	Areas with a distance closer than 1 km from the coast linme				
Table 2 Numbers o	Islands	lsla Hol	Islands except big main islands (Honsh Hokkaido, Shikoku,Kyushu and Okinaw				
	Number of		Number of	-		Deletive	[
Classification	Wind Farms	Ratio % (A)	Failures (2009)	Ratio % (B	5 5)	Relative Ratio (B/A)	
Hills/Mountains	402	49.0%	65	44.2	%	90.3%	
Flat Inland Areas	67	8.2%	8	5.49	%	66.7%	
Complex Coastal Areas/Islands	158	19.2%	19	12.9	%	67.2%	
Flat Coastal Areas/Islands	194	23.6%	55	37.4	%	158.3%	

might suffer from high turbulence intensity in IEC standard S-class.

 \triangleright As shown in Figure 6, more than 26 to 39 % of the sites may out of IEC standard classes depending on turbine class.

Potential higher causes of Failures by High Turbulence

◆ An example of mechanical failure caused by turbulent flow. A turbine with a capacity below 300kW at hilly site was found severely damaged with its **blade bearing and pitch control mechanism** in April 2008 after 7 year of operation. Fig. 8 shows the damaged blade and Fig. 9 shows the turbulence intensity (TI) at the site.

CONCLUDING REMARKS

♦ Out of all failures/damages, those caused by nature was 32.2 %, while technical causes was 23.8 %. 40.1 % of the unidentified excluded, nature cause becomes 54.2 % and technical causes 40.0 %.

♦ Among natural failure causes, lightning is the highest (77.3 %), then storm (9.8 %) and turbulence (3.9 %). However, only around 20 % of the wind turbine failures have been technically identified.

 \blacklozenge The database of Field Test Program has revealed that out of all wind plant sites, from 1/4 to 1/2 of them might suffer from high turbulence intensity in IEC standard S-class.

• It is desirable that an independent institute will continue this investigation with higher rights and duty of inquiry to identify technical causes of failures. All such efforts would help develop tougher wind turbines that fit to harder Japanese wind conditions, which is typical of severe wind conditions caused by complex terrain and tropical cyclones.

◆ This topic will be continued in various activities such as IEC standard, IEA expert meeting, National Research of Next Generation Wind Turbine Technology.

AKNOWLEDGEMENT

The present work was supported by NEDO's Investigation Program on Failures/Accidents of Wind Turbines and also a part of this study is funded by METI/NEDO in Research and Development Project of Next Generation Wind Turbine Generation Techno3ogy (R&D of Basic and applied Technology).

	IEA R&D Wind Task XI - Topical Expert Meeting On "Wind Conditions for Wind Turbine Design"
	1. Objective
	2. Wind Data
	3. Distribution of Turbulence Characteristics
	4. Coverage of NTM
	5. Parameters of NTM equations
	6. Suggestion on Amendment to 61400-1 Ed.3
	7. Conclusion
14,15 Dec.2010	2

	IEA	R&D Wind ' ''Wind C	Task XI - To C ondition	pical Expert s for Win	t Meeting Or I d Turbin	n e Design		
5. Parameters of NTM equations: $\sigma_{xx}=I_{ref}(a_{xx}V+b_{xx})$								
Representative Values for [a] in $\sigma_{xx} = I_{ref}(aV+b)$								
Representative Values	σ _{mean}		σ _{90q}		σ _σ			
	60magl	80magl	60magl	80magl	60magl	80magl		
Mean	0.88	0.87	1.08	1.08	0.15	0.16		
Medean	0.90	0.89	1.09	1.10	0.14	0.15		
Mode	0.90	0.95	1.10	1.15	0.13	0.15		
Increment	t 0.05		0.05		0.03			
Slope of Regression Line [A] vs I _{mean} (15)	0.89	0.89	1.09	1.08	0.15	0.15		
NTM Setting	0.75		0.75		0.00			
Representative Values for [b] in σ_{xx} =	I _{ref} (aV+	b)						
Benragentative Values	σ _{mean}		σ _{90q}		σσ			
Representative values	60magl	80magl	60magl	80magl	60magl	80magl		
Mean	1.72	1.94	4.50	4.64	2.06	2.17		
Medean	1.56	1.62	3.90	4.02	1.92	2.03		
Mode	0.80	1.20	2.50	3.50	1.60	1.80		
Increment	0.40		0.50		0.20			
Slope of Regression Line [A] vs I _{mean} (15)	1.54	1.63	4.04	4.25	1.95	2.03		
NTM Setting	3.7	75	5.0	60	1.4	14		
,15 Dec.2010								

И	EA R&D Wind Task XI - Topical Expert Meeting On "Wind Conditions for Wind Turbine Design"
5. Parameters of NTM equations	$\sigma_{xx} = I_{ref}(a_{xx}V + b_{xx})$
The following new NTM expressi observation • • • • •	ion would better represent
$\begin{array}{c c} \underline{Present NTM} & \underline{N} \\ \sigma_{mean} = I_{ref} (0.75V + 3.75 \text{ [m/s]}) & \sigma_{mean} \\ \sigma_{90q} = I_{ref} (0.75V + 5.6 \text{ [m/s]}) & \sigma_{90} \\ \sigma_{\sigma} = I_{ref} \cdot 1.44 & \text{[m/s]} & \sigma_{\sigma} \end{array}$	$\frac{\text{Iew NTM}}{\text{ean}} = I_{\text{ref}}(0.90V + 1.5 \text{ [m/s]})$ $= I_{\text{ref}}(1.09V + 4.05 \text{ [m/s]})$ $= I_{\text{ref}}(0.15V + 2.0 \text{ [m/s]})$
14,15 Dec.2010	32

	IEA R&D Wind Task XI - Topical Expert Meeting On "Wind Conditions for Wind Turbine Design"					
7. Conclusion						
1.The following was observed:						
(1) Linearity of σ -V relationship is excellent.						
(2) For σ _{mean} , most of the sites are well covered by standard turbulence categories A, B and C.						
 (3) For σ_{90q}, considerable portion standard turbulence categori 	n of the sites are not covered by es.					
 (4) For σ_σ, there is big deviation between observation and NTM: Most of the sites lie far above NTM. Measurements in average show tendency of increase with wind speed, whereas NTM assumes it stay constant with wind speed. 						
(5) Slopes of observed σ-V regression of slightly greater than that of N	ession lines were in average ITM.					
14,15 Dec.2010	48					

Future Work 1/4	19
 ■Problems ○Even "High Turbulence" condition • Turbulence intensity < 10% in wake observation area → too low as complex terrain ○Effects of Other Parameters on Wake? • Turbulence scale • Anisotropy 	
 Future Work New Turbulence Grids are needed →Active Type Turbulence Grids • Array of Small wings driven by servomotors 	

Мо	tivation				
Thunderstorms are common intense short-duration atmospheric (transient) events					
The add vel	e design standard (IEC 61400-1) for wind turbines does not explicitly fress load cases associated with thunderstorm downburst-related ocity fields				
OD	lectives				
	to describe a deterministic-stochastic hybrid model for simulation of thunderstorm microburst-related wind velocity fields				
	to compute loads on a utility-scale winds using the simulated				

Thunderstorm downbursts can cause very high wind speeds and large rapid direction changes
A hybrid deterministic-stochastic model was employed to generate microburst flow fields; then loads on a 5MW turbine were computed for these flows
The response of a wind turbine in such flow fields is strongly influenced by pitch and yaw control
The storm's touchdown point relative to the wind turbine can lead to strongly yawed flows. In strongly yawed flow conditions (for large offsets from the storm path), effective yaw control is needed to limit turbine load ranges.
Realistic shutdown sequences, blade pitch control logic, and yaw control logic are needed for accurate load estimation during downbursts

IEA experts meet 2010	ing on Wind Conditions for Wind Turbine Des Model config	uration	14 December
Period	WRF v3.0 Start: 15:00 JST Sep 9 2003	Topography Height	MSL(m) 2000 1900 1800 1800 1800 1800 1800 1900 19
Input data	6-houlry 20x20km JMA RANAL Daily 0.05x0.05deg TOHOKU Univ. NGSST		
Nesting Domain	2-way nesting Domain 1: 6 km (190x190 grids) Domain 2: 2 km (61x61 grids)		20 140 NO 180
Vertical layer	35 levels (Surface to 50hPa)	Toography Height	MsL(m) 1500- 1500- 1800-
Time step	Domain 1: 36 sec Domain 2: 12 sec	40	- 1600 - 1500 - 1500 - 1400 - 1300 - 1200 - 1200
FDDA PBL Scheme	On (Excluding PBL) Mellor-Yamada-Janjic PBL scheme	20	- 100 900 700 400 400 400
		20	40 60

IEA experts mee		14 December								
MM5 configuration										
				1.11	1					
S. March	MM5 v3.7				14					
Period	Start: 00:00 UTC 11 Sep 2003 End: 12:00 UTC 10 Sep 2003	2	TERRAIN HE	IGHT IN COLO	R					
Input data	6-houlry 20x20km JMA RANAL Daily 0.05x0.05deg TOHOKU									
Nesting	None	1997 - 1997 -								
Domain	Domain 1: 3 km (301x301 grids)	e			1					
Vertical layer	23 levels (Surface to 100 hPa)	- 17.			<mark></mark>					
Time step	Domain 1: 10 sec	9		Minako						
FDDA	On and Off cases (Excluding PBL)			Island	· · ·					
PBL Scheme	Eta (Mellor-Yamada) scheme									
			11							
		15 10		2						

Site Description

- The measurement site called Otsuki WF is located on the island of Shikoku
- The instruments were installed at a height of 280m asl along the mountain ridge.

CTC

The prevailing wind directions are north-west (winter) and south-east (summer).

Introduction 1/2	2 17
NEDO project(2008-) "Research and Development Project of Next Generation Wind Turbine Generation Technology (R&D of Basic and Applied Technology)"	
Subjects Technology toward highly safe and reliable wind turbine generation systems even in severer wind conditions such as typhoon and highly complex flow	
\checkmark Technology related to the very large wind turbine generation systems.	
\checkmark To solve these urgent subjects, the wind condition models for complex terrain and for Typhoons(Hurricanes) are developed in this project.	[
Wind condition model Wind measurements in complex terrain by Met-mast and SODAR/LID	AR
✓Data analysis of NEDO FT-data and Guideline data	
IEA R&D Wind Task XI - Topical Expert Meeting @ Tokyo	VEIT / AIST

Purpose	Purpose of the Work						4 17	
Development of a wind condition model in complex terrain								
✓This work shows the results of analysis using NEDO guideline measurement data to develop the turbulence model in complex terrain.								
✓ Parameters of normal turbulence model (NTM) described in IEC 61400-1 are compared and evaluated using the guideline data.								
Wind turbine class in IEC61400-1								
Wind t	Wind turbine class		I	II	III	S		
Refe	Reference wind speed V _{ref} [m/s]		50	42.5	37.5	Values specified		
Turbul	ence	Α		0.16		by designer		
category		В	0.14			1		
l _{re}	I _{ref} C		0.12					
IEA R&D Wind Task XI - Topical Expert Meeting @ Tokyo WEIT / AIST								

Conclusions	16 17
✓ Parameters of turbulence model described in IEC 61400-1 amendme were compared and evaluated using the NEDO guideline data in the complex site.	ent
✓ The results showed that the correction of turbulence standard deviation by using $C_{CT} = 1.15i_c$. may become very conservative for the fatigue leveluation.	on bad
Since the fatigue load index presented is a simple method to evaluate the IEC correction model of turbulence intensity, the effects of each component of the turbulence standard deviation to the fatigue load sh be evaluated by aero-elastic analysis such as Bladed or FAST.	ə nall
✓ Japanese national committee for IEC TC88 will propose the new turbulence model in the coming MT01. The results in this study may contribute for the next edition of IEC 61400-1.	
IEA R&D Wind Task XI - Topical Expert Meeting @ Tokyo	WEIT / AIST

Michael Schmidt, Tanja Mücke Modeling Turbulent Typhoon Time Series

IEA WIND ENERGY - Task 11: Base Technology Information Exchange 155

Data sets from Tropical Cyclones Horizontal wind Vertical wind: Standard deviations Wind directions Conclusions

Acknowledgements to

- Ohsawa-sensei, Uni Kobe, Shirahama-data: Typhoons Orchid 1994 and Vicki 1998 (2 sets)
- Maeda-sensei, Uni of Kyushu, NeWMeK-data: Typhoons Bart 1999 and Usagi 2007 (8 sets)
- Prof. F. Masters, Uni of Florida, FCMP-data: Hurricanes Dennis, Rita and Wilma (all 2005, 5 sets)
- Hayashi-sensei, Uni Kyoto, Miyako-island data: Typhoon Maemie 2003 (6 "Sonic-", 9 "Vane"-sets)

Michael Schmidt, Tanja Mücke Modeling Turbulent Typhoon Time Series

<figure>

3

Extreme DC's (IEC) in midlatitudes and typhoons

Vertical wind: Standard deviations Wind directions Conclusions

Typhoon data and implications

- Sonic data are showing higher TI's, higher Gust factors, and higher kurtosis than "Vane"-data.
- Sonic data are resolving turbulence at high wind speeds more properly.
- "Vanes" may be too inert or 'lethargic" at high wind speeds.
- Kurtosis is not considered in IEC-regulations, should it?
- For designing WT in typhoon-affected areas there is a need for "Class S"-specification, e.g. for TI's and EDC's.

Michael Schmidt, Tanja Mücke Modeling Turbulent Typhoon Time Series

 Data sets from Tropical Cyclones

 Horizontal wind

 Vertical wind: Standard deviations

 Wind directions

 Conclusions

 New Standards

 • "Typhoon-proved" Wind turbines has to be certified.

 • IEC-regulations for "Class S"-Turbines are needed ...

 ... soon.

 • We want to take part in this discussion ...

 ... and to accelerate its progress.

Michael Schmidt, Tanja Mücke Modeling Turbulent Typhoon Time Series

Data sets from Tropical Cyclones Horizontal wind Vertical wind: Standard deviations Wind directions Conclusions

Thank you for attention.

www.forwind.de tanja.muecke@uni-oldenburg.de michael.schmidt@forwind.de

Michael Schmidt, Tanja Mücke Modeling Turbulent Typhoon Time Series

・ロト・西ト・ヨト・ヨー うへの

Content	
 Load and Power modes Turbine damages seen when hit by a typhoon Yaw Power Backup Strengthen tower design 	
2 Name of presentation	Wind. It means the world to us."

Ту	phoon Tower			
Des - Ja - Su - Pr Sol	sign Drivers: panese building code urvey of Japanese mar otection of the turbine ution:	ket during extreme wind ever	nts	
Γ		V80 2.0MW HH78 IEC1a	V90 3.0MW HH75 IEC S	
	Wind zone:	IEC 1a: V _{ext} = 70 m/s V _{ref} = 50 m/s V _{ave} = 10 m/s	IECS: V _{ext} = 92 m/s V _{ref} = 50 m/s V _{ave} = 10 m/s	
9	Number of sections:	3	4	
	Weight, tower:	Bottom: 54t Middle: 58t Top: 36,5t	Bottom: 58t Middle 1: 48t Middle 2: 41t Top: 26t	
16 Nai	ne of presentation		Wind. It means the world to	us.™

Estimation of Extreme Wind Speed by using Monte Carlo Simulation of Tropical Cyclone

Atsushi YAMAGUCHI, The University of Tokyo

1

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan IEA WIND ENERGY -Task 11: Base Technology Information Exchange 179

Background

- Tropical and sub-tropical regions are called "mixed climate", where the extreme wind speed is affected by both extratropical cyclone and tropical cyclone. (Gomes and Vickery 1978)
- Monte Carlo Simulation (MCS) of tropical cyclones are proposed and adopted in ASCE standard (2000) and AIJ recommendation (2004).
- In IEC61400-1 Annex E, a method based on Gumbel analysis and MCP (Measure, Correlate and Predict) method and Gumbel analysis is mentioned.

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

Estimation of extreme wind speed

 V_n is the wind speed with the recurrence period of N years

The probability that the annual maximum wind speed exceeds V_n is 1/N.

Extreme wind speed by MCP

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

MCS of tropical cyclone

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan IEA WIND ENERGY -Task 11: Base Technology Information Exchange 181

5

6

Parameters of tropical cyclones

Consider past tropical cyclones which passed within the simulation circle with the radius of 500km

The central pressure P_0 , translation velocity C, approach direction θ , the minimum approach distance d_m and the annual occurrence rate λ are obtained from database.

The surrounding pressure P_{∞} and the distance of maximum wind speed R_m are identified assuming Schloemer's model.

$$p(r) = p_C + \left(p_{\infty} - p_C\right) \exp\left(-\frac{R_m}{r}\right)$$

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

PDF of the parameters

Parameter	Probability density function	Model parameter
Central pressure difference <i>∆p</i>	$a \times \frac{1}{\sqrt{2\pi\sigma_{\rm e}}} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \mu_{\ln x}}{\sigma_{\rm e}}\right)^2\right]$	μ : mean value σ ; standard deviation
Radius of maximum wind R_m	$+(1-a) \times \frac{k(x)}{k} \left[\exp\left[-\left(\frac{x}{k}\right)^{k}\right] \right]$	<i>k</i> : weibull shape coefficient <i>c</i> : weibull scale coefficient
Translation velocity C	$\left[\left(c \right)^{n} \right] \left[\left(c \right)^{n} \right]$	a: mixing coefficient
Approach direction θ	$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{\theta-\mu}{\sigma}\right)^2\right]$	μ : mean value σ : standard deviation
Minimum approach distance d_m	$zd_{\min}^{2} - (z-2r)d_{\min} - r$	<i>z</i> : model coefficient <i>r</i> : critical distance
Annual occurrence rate λ	$\frac{\lambda_m^{\lambda} \exp\left(-\lambda_m\right)}{\lambda!}$	λ_m : average annual occurrence rate

8

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan IEA WIND ENERGY -Task 11: Base Technology Information Exchange 182

	∆p	R _m	С	θ	D _{min}
∆p	1.00	-0.20	0.08	0.00	0.37
R_m	-0.20	1.00	0.34	-0.01	-0.18
С	0.08	0.34	1.00	-0.23	-0.18
θ	0.00	-0.10	-0.23	1.00	-0.29
D _{min}	0.37	-0.18	-0.18	-0.29	1.00

Significant correlations can be seen between Δp and R_m , and between *C* and R_m .

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

Generation of tropical cyclones

The probability density functions of the parameters of tropical cyclones and the correlations among them must be satisfied simultaneously.

If all the parameters follow the normal distribution, classic orthogonal decomposition can be used.

 $\mathbf{x}^{T} = \left\{ \ln\left(\Delta P\right), \quad \ln\left(R_{m}\right), \quad \ln\left(C\right), \quad \theta, \quad d_{\min} \right\}$

Let ${\bf S}$ the variance-covariance matrix of ${\bf x}.$

Calculate eigenvalues λ_i and the eigenvectors ϕ_i of S.

Generate vectors **z**, the components of which satisfy normal distribution and no correlations between components.

calculate $\mathbf{x} = [\phi_i]^{-1} \mathbf{z}$ Then, the component of x satisfy normal distribution and the correlations

Modified orthogonal decomposition

• A little modification to classical orthogonal decomposition. (Ishihara et al., 2005)

$$\mathbf{x}^{T} = \left\{ \ln\left(\Delta P\right), \quad \ln\left(R_{m}\right), \quad \ln\left(C\right), \quad \theta, \quad d_{\min} \right\}$$

Let S the variance-covariance matrix of x.

Calculate eigenvalues λ_i and the eigenvectors ϕ_i of S.

Generate vectors **z**, the components of which satisfy **mixed probability of normal and uniform distribution** and no correlations between components.

```
calculate \mathbf{x} = [\boldsymbol{\varphi}_i]^{-1} \mathbf{z}
```

The component of \mathbf{x} does satisfy the correlations but does not satisfy the distributions.

Modify the component of \mathbf{x} so that they satisfy the distributions.

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

Correlations between parameters

Original		⊿р	R _m	С	θ	D _{min}
	⊿р	1.00	-0.20	0.08	0.00	0.37
	R_m	-0.20	1.00	0.34	-0.10	-0.18
	С	0.08	0.34	1.00	-0.23	-0.18
	θ	0.00	-0.10	-0.23	1.00	-0.29
	D _{min}	0.37	-0.18	-0.18	-0.29	1.00
Simulated		∆p	R _m	С	θ	D _{min}
	∆p	1.00	-0.19	0.09	0.00	0.35
	R_m	-0.19	1.00	0.31	-0.08	-0.18
	С	0.09	0.31	1.00	-0.22	-0.17
	θ	0.00	-0.08	-0.22	1.00	-0.30
	D _{min}	0.35	-0.18	-0.17	-0.30	1.00

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

IEA WIND ENERGY - Task 11: Base Technology Information Exchange 184

12

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

Wind speed and direction over flat terrain

Vertical profile of wind speed in the boundary layer of tropical cyclones (Ishihara et al., 1995).

$$u_{T,F}(H_{h},t) = u_{g} \left(H_{h} / z_{g} \right)^{\alpha_{u}}, \quad u_{g} = \sqrt{v_{\theta g}^{2} + v_{rg}^{2}}$$
$$\theta_{T,F}(H_{h},t) = \theta_{g} + \theta_{S} \left(1.0 - 0.4 \left(H_{h} / z_{g} \right) \right)^{1.1}, \quad \theta_{g} = 0$$

$$\alpha_{u} = 0.27 + 0.09 \log z_{0} + 0.018 (\log z_{0})^{2} + 0.0016 (\log z_{0})^{3}$$

$$z_{g} = 0.06 \frac{v_{\theta g}}{f_{\lambda}} (\log R_{0\lambda})^{-1.45}$$

$$\theta_{S} = (69 + 100\xi) (\log R_{0\lambda})^{-1.13}$$

$$f_{\lambda} = \left(\frac{\partial v_{\theta g}}{\partial r} + \frac{v_{\theta g}}{r} + f\right)^{0.5} \left(2\frac{v_{\theta g}}{r} + f\right)^{0.5}$$

$$R_{0\lambda} = \frac{v_{\theta g}}{f_{\lambda} z_{0}}$$

$$\xi = \left(2\frac{v_{\theta g}}{r} + f\right)^{0.5} / \left(\frac{\partial v_{\theta g}}{\partial r} + \frac{v_{\theta g}}{r} + f\right)^{0.5}$$

14

Local wind speed and direction

Wind at the site of interest is affected by local terrain

$$u_{T,R}(H_h,t) = C_{FR}(\theta_{T,F}(H_h,t)) \times u_{T,F}(H_h,t)$$
$$\theta_{T,R}(H_h,t) = D_{FR}(\theta_{T,F}(H_h,t)) + \theta_{T,F}(H_h,t)$$

Extreme wind speed (Tropical cyclone)

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan IEA WIND ENERGY -Task 11: Base Technology Information Exchange 186

Extreme wind speed in mixed climate region 17

 $F^{\text{mixed}}(u) = 1 - \left[1 - F^{\text{extra-tropical}}(u)\right] \left[1 - F^{\text{tropical}}(u)\right]$

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

Example

18

Proposed method

IEA Wind Task 11, No.64, 14-15 December, 2010. Tokyo, Japan

Summary 20

- The method mentioned in IEC61400-1 (Gumbel analysis with MCP method) underestimates the extreme wind speed in mixed climate region.
- The MCS of tropical cyclones have been widely used in mixed climate regions and appropriately estimate the extreme wind speed.

19

IVIC	tivation
Flo [.] cha sim	N fields associated with the Stable Boundary Layer (SBL) have some different racteristics than more conventional Neutral Boundary Layer (NBL) flow fields ulated in turbine loads computation
Þs	ometimes, SBL fields are sometimes accompanied by Low-Level Jets (LLJs)
≻s	BL wind shear is different from NBL
Þw	ind direction changes (wind turning) over the rotor plane in SBL fields
Ob �	jectives Generation of high-resolution four-dimensional inflow velocity fields for a range of atmospheric stability conditions that, to date, have not been
	systematically considered in wind turbine performance and design

_								
No.	Run Name	G (m/s)	CR (K/h)	z0 (m)	Hi (m)	N (K/m)	f (1/s)	G: Geostrophic wind
1	G9C75Z3H200N3f10	9	0.75	0.03	200	3/1000	0.0001	
2	G12C75Z3H200N3f10	12	0.75	0.03	200	3/1000	0.0001	CR: Surface cooling rate
3	G15C50Z3H200N3f10	15	0.5	0.03	200	3/1000	0.0001	
4	G15C75Z1H200N3f10	15	0.75	0.01	200	3/1000	0.0001	Z : Surface roughness
5	G15C75Z3H200N10f10	15	0.75	0.03	200	10/1000	0.0001	0
6	G15C100Z3H200N3f10	15	1	0.03	200	3/1000	0.0001	III Indial Installant of Di
7	G18C100Z3H200N3f10	18	1	0.03	200	3/1000	0.0001	H _i : Initial height of BL
8	G18C75Z3H200N3f10	18	0.75	0.03	200	3/1000	0.0001	
9	G18C75Z3H200N10f10	18	0.75	0.03	200	10/1000	0.0001	N: Inversion strength
10	G15C75Z3H200N3f10	15	0.75	0.03	200	3/1000	0.0001	Ũ
11	G12C75Z1H200N3f10	12	0.75	0.01	200	3/1000	0.0001	E. Coriolis fraguancy
12	G15C75Z3H200N3f08	15	0.75	0.03	200	3/1000	0.00008	F. Conolis frequency
13	G15C75Z3H200N3f12	15	0.75	0.03	200	3/1000	0.00012	
14	G15C75Z10H200N3f10	15	0.75	0.1	200	3/1000	0.0001	1
15	G18C75Z1H200N3f10	18	0.75	0.01	200	3/1000	0.0001	¥
16	G18C75Z10H200N3f10	18	0.75	0.1	200	3/1000	0.0001	Control Case
17	G15C75Z1H200N3f12	15	0.75	0.01	200	3/1000	0.00012	control case
18	G15C75Z3H200N10f08	15	0.75	0.03	200	10/1000	0.00008	The effect of variation of external
19	G15C75Z3H200N10f12	15	0.75	0.03	200	10/1000	0.00012	parameters on inflow characteristic
20	G15C75Z10H200N3f12	15	0.75	0.1	200	3/1000	0.00012	and turbine loads is studied by
21	G15C100Z10H200N3f08	15	0.1	0.01	200	3/1000	0.00008	changing external parameters and
22	G15C100Z10H200N3f12	15	1	0.01	200	3/1000	0.00012	comparison with the control case

Run Name	GV (m/s)	CR (K/h)	z0 (m)	Hi (m)	N (K/m	f (1/s)		
G15C75Z3H200N3f10	15	0.75	0.03	200	3/1000	0.0001		
	Ĩ	IFC N	outral	CP	TIL	IFS		
GV		nio n	cuerar	GI	-111.0	15m/s	*Final 10 minutes of wind	
Jet height				25	5m	255m	simulation used for comparis	
Ri				0	.14	0.14		
Vh		12.16m/s		12.1	6m/s	12.16m/s		
Zo		0.0)3	0	.03	0.03		
TI		4.20	6%			4.26%		
Vertical mean p	rofile P	ower law	$(\alpha = 0.2)$	Jet 1	orofile			
From final 10 internal parar urbSim for th Vertical wind	mins of neters) e case o profile	ELES wi extract of NBL (s were s	ind field ted wer (IEC) an set at d	l simu e usec d for efault	lation, d to ge GPLLJ value t profi	the resul enerate w s in the Tu או	ting wind parameters ind fields using ırbSim simulations	

TEM 64 "WIND CONDITIONS FOR WIND TURBINE DESIGN"

TEM 64 "WIND CONDITIONS FOR WIND TURBINE DESIGN"

TEM 64 "WIND CONDITIONS FOR WIND TURBINE DESIGN"

Summary of IEA RD&D Wind – 64th Topical Expert Meeting

Félix Avia, Lance Manuel

a) Participants

A total of 24 persons registered for this meeting. They represented the following countries: Germany, Japan, Sweden, and the USA. Experts from China were invited to participate in the meeting (actually China has already joined Task 11).

The participants represented a great variety of stakeholders related to the topic. Those were: research organizations, universities and consultants.

A total of 14 presentations were given:

1. Presentation of Introductory Note

Dr. Tetsuya Kogaki. (AIST)

2. Statistical analysis of wind turbine failures. Marketability of new wind turbine classes Hikaru Matsumiya, HIKARUWIND Lab. Ltd. JAPAN

3. Turbulence characteristics in domestic sites in relation to IEC-61400 NTM model Sannosuke Tanigaki Wind Energy Corporation. JAPAN

4. Experimental study of wake effects for complex terrain - Advanced simulation techniques of tropical cyclones, complex terrain and wake effects

Junsuke Murata. Mie University. JAPAN

5. Simulation of Thunderstorm downburst inflow fields and their influence on wind turbine loads

Lance Manuel. University of Texas at Austin. USA

6. Numerical simulation of typhoon winds with a mesoscale model Teruo Ohsawa. Kobe University. JAPAN

- 7. Analysis of SODAR Measurements over Complex Terrain in JAPAN. Hiroshi Kubo, ITOCHU Techno-Solutions Corporation. JAPAN
- 8. Impact of severe wind conditions for wind turbine design Hiroshi Imamura, WEIT, JAPAN
- 9. CFD simulations of wake effect in large wind farms Stefan Ivanell. Gotland University. SWEDEN

10 Brief Introduction of China Extreme Wind Conditions Survey and research Yu Zhang, China General Certification Center

11 Modelling turbulent typhoon time series *Michael Schmidt and Tanja Muecke. Univ. of Oldenburg. For Wind. GERMANY*

12. Typhoon protection system for wind turbines *Niels Kjaer Launtsen and Morten Sloth. VESTAS. Denmark*

13. Estimation of Extreme Wind Speed by using Monte Carlo Simulation of Tropical Cyclone *Atsushi Yamaguchi. University of Tokyo. JAPAN*

14. Wind Turbine Loads in Simulated Stable and Neutral Boundary Later Flow Fields Lance Manuel. University of Texas at Austin. USA

b) Discussion

Following the two days of presentations the floor was opened and a general discussion took place. A number of different topics were handled. In particular, the following topics were discussed:

- Definition of Extreme Conditions: Typhoons, Thunderstorms Downburst, etc.
- Data base of Extreme Conditions
- Wind Data Base for comparative analysis of IEC 61400-1 Normal Turbulence Model
- Increase cooperation between measurement and simulation work

Definition of Extreme Conditions: Typhoons, Thunderstorms Downburst, etc.

Codes and standards for severe wind conditions caused by tropical cyclones and complex terrain will be needed for wind turbine design in order to expand the wind energy market, and in order to secure reliability and safety of wind turbine generation systems.

A niche market already exists in very windy areas with extreme conditions: Very Complex Terrain areas, Typhoons areas, Thunderstorm Downburst areas, etc. For the development of this market, it is important to have WT Technology especially designed for such extreme conditions as we begin to gain a better understanding of these conditions. This is one of the targets of the NEDO research project: to develop Technology toward highly safe and reliable wind turbine generation systems, even in severe wind conditions such as typhoon and highly complex flow. To address these urgent subjects, wind condition models for complex terrain and for Typhoons (Hurricanes) will be developed in this NEDO project (H. Imamura).

The wind conditions associated with tropical cyclones, complex terrain and wakes are included in the agenda for revision of IEC 61400-1. However, to date, severe wind conditions have not been fully taken into account in design, since they are still at the R&D stage.

Discussing and sharing information on unclear wind conditions is therefore of great importance, since it is expected to deliver safer and more reliable next-generation wind turbine designs.

The definition of extreme storms was the first point discussed. The second issue discussed related to the definition of specific extreme condition classes in addition to those already included in the IEC standard.

There are already existing definitions of extreme transient events intended to describe characteristics such as are seen in thunderstorms, but more work is needed to verify whether the existing load cases in the standards adequately describe wind velocity fields associated with thunderstorm downbursts and other transient events.

This action should be carried out under the umbrella of the IEA Wind Implement Agreement in coordination with the IEC working groups.

The possibility to launch a new IEA Wind Task was discussed, but no decision was adopted during the meeting.

Data base of extreme storms

At the present time, there are large number of wind data being collected worldwide, including measurements in very complex terrain, typhoons areas and high turbulent intensity areas. However, to create an open Wind Data Base (WDB) is a very difficult task, due to confidentiality reasons that make it very difficult to have access to any existing data.

The National R&D Japanese project "Research and Development of Next-generation Wind Power Generation Technology/Research and development of basic and applied technologies (FY2008-2012)", has wind speed data measured at a total of 418 sites in Japan

China has a new wind resource and condition survey program with more than 400 masts with 70 m height and 70 masts with 100 m height. Unfortunately, the data will not be public available, but the result of the analysis of the data will provide useful information.

One of the options suggested is to try to collect wind data from sites without information of the location of the site, to avoid confidentiality problems. Another option is to aggregate any data available and report it in summary form such as with joint and/or marginal probability histograms for key wind-related random variables. Such an approach would protect the identity of the sites used as well as allow the holder of the raw data to preserve their advantage of having collected the data.

Another option suggested was to try to find available wind data from public institutions (Meteorological Institutes, Airports, etc).

The possibility to launch a new IEA Wind Task to create an open WDB was discussed, but no decision was adopted during the meeting.

Specific Wind Data Base for comparative analysis of IEC 61400-1 Normal Turbulence Model

According to the information presented during the meeting, it is clear that the Normal Turbulence Model (NTM) included in IEC 61400-1 (defining three levels of turbulence intensity (TI), A=16%, B=14% and C=12%), underestimates TI values calculated for several places using measured data, mainly in complex terrain sites.

From the National R&D Japanese project "Research and Development of Next-generation Wind Power Generation Technology/Research and development of basic and applied technologies (FY2008-2012)", using measured wind speed data at <u>259 sites</u> in Japan, the turbulence intensity at 25 - 50% of the measurement sites exceeds category A turbulence intensity specified in the current edition of IEC 61400-1 Ed.3.

There is not sufficient information available on the process followed in the development of the NTM included in the IEC 61400-1 standard, but there was a general consensus among the participants that a review of the model is required.

The creation of a Wind Data Base (WDB) including wind data from different sites around the world would be very useful to perform needed analyses to try to verify the acceptability of the current NTM definition or to define new NTM coefficients, especially for complex terrain areas and/or specific class S sites.

The possibility to create a working group for comparative analysis of the NTM coefficients was discussed, but no decision was adopted during the meeting.

Increase cooperation between measurement and simulation work

Results were presented showing discrepancies between measured data and simulated data of typhoon winds. In order to improve the existing simulation models, more validation exercises are required.

One of the first constraints, as was already stated in previous paragraphs, is the lack of valuable measured data to perform these studies.

Another crucial point is the necessity to harmonise the measurements process of the wind conditions. Uncertainty in wind speed measurements contributes to the overall uncertainty. By adopting best practices in the design, selection, calibration, deployment and use of anemometry, uncertainty can be minimised.

There is no clear guidance on the best practice in the use of anemometry for measurement of extreme wind conditions. There are various types of anemometer on the market. Some are highly responsive and can be used for defining the detailed turbulence structure of the wind. The most commonly used type of instrument is undoubtedly the three-cup anemometer. Other types of instruments are available and can be more appropriate in specific applications.

The necessity for harmonization of the methodologies used to analyse measured wind data was also discussed. This action will allow performing more useful comparative studies of the results obtained, without the necessity of sharing the WDB used for the studies.

The possibility to organize comparative studies of analysis of extreme wind conditions between several institutions using similar data will help in the future to harmonise these methodologies and procedures.

c) Future actions under the umbrella of IEA Wind

During the discussions, several actions were identified as crucial ones to be carried out to improve existing knowledge in reference to the Wind Conditions for WT design.

These actions were discussed as was the possibility to launch a new Task under the umbrella of the IEA Wind Implement Agreement, and in coordination with IEC working groups. However, no decision was adopted during the meeting in this direction.

A general agreement among the participants was reached to arrange a new TEM in this specific subject in 2013 in order to exchange knowledge generated as the output of already existing research actions.

Participants List - WIND CONDITIONS FOR WIND TURBINE DESIGN

iea wind The University of Tokyo (Building 18, Komaba I Campus) . December 14th -15th, 2010

	Name	Last Name	Job Center	Country	E-mail	
1	Felix	Avia	OA of IEA Wind Task 11 - CENER	SPAIN	favia@cener.com	
2	Michael	Schmidt	ForWind, University of Oldenburg	GERMANY	michael.schmidt@forwind.de	
3	Tanja	Mücke	ForWind, University of Oldenburg	GERMANY	tanja.muecke@uni-oldenburg.de	
4	Jinhua	Hu	Goldwind Science	CHINA	hujinhua@golwind.de	
5	Yu	Zhang	China General Certification Center	CHINA	chenlj@cgc.org.cn	
6	Leije	Chen	China General Certification Center	CHINA	zhangyu@cgc.org.cn	
7	Stefan	Ivanell	Gotland university	SWEDEN	stefan.ivanell@hgo.se	
8	Manuel	Lance	University of Texas at Austin	USA	Imanuel@mail.utexas.edu	
9	Niels	Lauritsen	Vestas Wind System A/S	DENMARK	nkl@vestas.com	
10	Morten	Sloth	Vestas Wind System A/S	DENMARK	mosl@vestas.com	
11	Jonathan	Carboon	Vestas Asia Pacific	DENMARK	jocab@vestas.com	
12	Junsuke	Murata	Mie University	JAPAN	murata@mach.mie-u.ac.jp	
13	Hikaru	Matsumiya	HIKARUWIND.LAB. Ltd	JAPAN	h-matsumiya@aist.go.jp	
14	Teruo	Ohsawa	Kobe University	JAPAN	ohsawa@port.kobe-u.ac.jp	
15	Hiroshi	Kubo	ITOCHU Techno-Solutions	JAPAN	hiroshi.kuboa@ctc-g.co.jp	
16	Sannosuke	Tanigaki	Wind Energy Corporation	JAPAN	tngk@pop16.odn.ne.jp	
17	Atsushi	Yamaguchi	The University of Tokyo	JAPAN	atshushi@bridge.t.u-tokyo.ac.jp	
18	Makoto	Lida	The University of Tokyo	JAPAN	iida@cfdl.t.u-tokyo.ac.jp	
19	Chuichi	Arakawa	The University of Tokyo	JAPAN	arakawa@cfdl.t.u-tokyo.ac.jp	
20	Hiroshi	Imamura	Wind Energy Corporation	JAPAN	imamura@windenergy.co.jp	
21	Yoshishori	Ueda	Wind Energy Corporation	JAPAN	y_ueda@mhi.co.jp	
22	Tetsuya	Kogaki	AIST	JAPAN	kogaki.t@aist.go.jp	
23	Yasuyuki	Oguro	JEMA	JAPAN	yasuyuki_oguro@jema-net.or.jp	
24	Kazuo	Shibata	JEMA	JAPAN	kazuo_shibata@jema-net.or.jp	
25	Mina	Nakae	JEMA	JAPAN	mina_nakae@jema-net.or.jp	
26	Katsushiko	Kadoguchi	AIST	JAPAN	k.kadoguchi@aist.go.jp	

