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Introduction
• Thanks – especially to Chris (and Kathryn)!

• Welcome to department:
• 200 academic/research staff; 150 students (includes ~60 PhD students)
• Host components: NCAS, NCEO, UK Met Office
• Soon to be joined on campus by ECMWF HQ

• My “Energy Meteorology” research group

• Origin/history of S2S
• Introductory 
• Version of content in MSc “Climate Impact Modelling and Climate Services” module

• Online course: https://www.reading.ac.uk/meteorology/online-courses/classes 
• Debt to excellent book (editors Robertson & Vitart, 2019)

• S2S in energy applications
1. To what extent are subseasonal forecasts able to skillfully forecast energy?
2. Can this skill be enhanced using advanced techniques (pattern-based, conditional forecasting, sequential learning)?
3. To what extent could skillful subseasonal forecasts potentially produce value in decision-making contexts? 2

https://www.reading.ac.uk/meteorology/online-courses/classes


Why S2S?
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Figs: Toth and Buizza (2019); White et al (2017)
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• “Push”: growth of skill of NWP (day per decade)
• “Pull”: user driven interest (need/desire to have S2S forecast)



Nature of s2s
• Historically, the S2S “predictability desert” between initial condition and boundary condition predictability

• IC predictability low in troposphere
• BC predictability from large scale forcing too weak on S2S timescale
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Nature of s2s
• Historically, the S2S “predictability desert” between initial condition and boundary condition predictability

• IC predictability low in troposphere
• BC predictability from large scale forcing too weak on S2S timescale

• è ”Mixture” of IC and BC problems
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Mixed space

IC: “Slow” climate components (ocean, ice, stratosphere)
BC: “Fast” climate components (troposphere)



Origins of S2S
Last decade or so – significant progress in S2S enabled by: 
• the identification (and ability to model/simulate) physical sources of initial-condition S2S predictability,
• the scale-dependence of forecast error growth, and
• the use of ensemble-based techniques.

6



Origins of S2S
Last decade or so – significant progress in S2S enabled by: 
• the identification (and ability to model/simulate) physical sources of initial-condition S2S predictability,
• the scale-dependence of forecast error growth, and
• the use of ensemble-based techniques.
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Colour – annular mode index (~ red = NAO-)

Examples:
• ENSO
• Madden-Julian Oscillation (MJO)
• Land surface (snow cover, land moisture)
• Stratosphere-troposphere interaction
Evolving on ”S2S timescales” (weeks – months)

Physical sources
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MJO (Hartmann and Hendon, 2007)

SSWs (Baldwin and Dunkerton, 2001)



Physical sources
Intuitive picture:
• Persistent “external forcing” (e.g., MJO/SSW)
• à preferred large-scale circulate states (e.g., via teleconnection)
• à modified day-to-day regional weather
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Physical sources
Intuitive picture:
• Persistent “external forcing” (e.g., MJO/SSW)
• à preferred large-scale circulate states (e.g., via teleconnection)
• à modified day-to-day regional weather

Example: winter North Atlantic Oscillation (NAO) / Euro-Atlantic regimes 
• Statistical connection to MJO phase (e.g., Cassou 2008)
• Linked to changes in weather impacting Europe / European energy
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GB/Norway combined daily demand net wind 
(GW, simulated system circa 2010)

NAO positive
NAO neutral
NAO negative

Left - Ely et al 2013.  Above – Bloomfield et al 2019.
Also see, e.g., Grams et al 2017; van der Weil 2019.



Origins of S2S
Last decade or so – significant progress in S2S enabled by: 
• the identification (and ability to model/simulate) physical sources of initial-condition S2S predictability,
• the scale-dependence of forecast error growth, and
• the use of ensemble-based techniques.
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Scale dependence of predictability
• OSSE (observing system simulation experiment), atmosphere only

• “Truth” nature simulation
• Limited “observations” used to form initial analysis and subsequent forecast of nature simulation

• Error variance “grows” over time
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Fig: adapted from Toth and Buizza 2019 (itself adapted from Prove and Errico 2015) 



Scale dependence of predictability
• OSSE (observing system simulation experiment), atmosphere only
• Error variance grows over time but…
• … saturates against random forecast later for larger scales
• è Longer window for predictability at larger scales
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Error from “initial analysis”1-14 day ahead forecasts
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Fig: adapted from Toth and Buizza 2019 (itself adapted from Prove and Errico 2015) 

Error from “random” forecast

Saturates at ~2days

Saturates at ~10days



(a) Instantaneous, no truncation (T120)

(b) 48h average, no truncation (T120) (c) Instantaneous, truncation (T15)

Spatial and/or temporal averaging
• Weeks - months
• Few 1000’s km

Time-averaging Spatial-averaging

Raw field (Z500)



Origins of S2S
Last decade or so – significant progress in S2S enabled by: 
• the identification (and ability to model/simulate) physical sources of initial-condition S2S predictability,
• the scale-dependence of forecast error growth, and
• the use of ensemble-based techniques.
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Ensembles

• Most commonly: initial condition ensembles

• Latterly: stochastic physics ensembles, multi-model ensembles
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Ensembles
• Typically used in aleatoric fashion: “average” over “noise” to reveal “signal”
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ensemble

Fig: Takaya (2019)



Origin of S2S – summary
Neglected many practical and scientific issues: 
• ensemble construction
• drift/calibration
• central role of data assimilation and initialisation

However, fundamentals:
• Traceable (event-wise) S2S predictability occurs at large scales in time and space
• Relies on existence of “slow evolving” source with some level of initial condition predictability
• Climate (statistical) S2S predictability occurs when large-scale conditions influence ”fast evolving” / “small scale” weather
• Averaging used to extract the ”signal” from “noise” (over ensemble members, over space or over time)

• The useability challenge:
• Extent to which “weak” meteorological skill translates into energy forecasts
• Connecting skill to potential value in energy-facing applications

18



S2S in energy applications
• S2S4E “climate service for energy”

• ~3 year research programme over 5 EU institutes
• Overall lead: Albert Soret (BSC)

• Here present work from team at UReading (thanks: Paula, Hannah, James, David and Andrew)
1. To what extent are subseasonal forecasts able to skillfully forecast nationally-aggregated load/generation?
2. Can this skill be enhanced using:

a. Pattern-based forecasting?
b. Conditional forecasting?
c. Multimodel ensembles and sequential learning algorithms?

3. To what extent could skillful subseasonal forecasts potentially produce value in energy market trading?

Focus on principles and methods rather than quantitative precision

Figs: Bloomfield (2019 & 2021)

This project has received funding from the Horizon 2020 programme under grant agreement n°776787. 
The content of this presentation reflects only the author’s view. The European Commission is not 
responsible for any use that may be made of the information it contains.



Models and data (in brief)
Simple physical/statistical models linking “weather” to “energy”
• ERA5 meteorology linked to ENTSO generation/load data (circa 2016/2017) 
• Hourly wind, solar PV, demand at national level
• Reasonable performance (average R2 ~0.8-0.9, RMSE ~5-10%)

Perfect model experiments: examine skill/value of subseasonal (up to ~week 6) forecasts
• See, e.g., Cannon et al (2017) for discussion of “conversion” vs “forecast” error
• ERA5 nationally-aggregated hourly wind, solar, demand 1950-2020 (“truth”)
• Two extended-range reforecast datasets for energy (models current ~2016)

• ECMWF-ER à 11 member hindcast 1995-2015
• NCEP-GFS à lagged 12-member hindcast 1999-2010

Open Access research dataset (publication: Bloomfield et al, 2021)

Figs: Bloomfield (2019 & 2021)
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Baseline “gridpoint” forecast
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Figs: Bloomfield et al (2021)

Question 1: To what extent are gridpoint-based subseasonal forecasts able to skillfully forecast nationally-
aggregated load/generation?

• NB: grid-points are spatially averaged (e.g., to national-level) prior to “conversion” to energy 



Gridpoint forecast skill
• Evidence for skill (to at least week 2)
• Skill depends on metric chosen

• Typically less skill in more complex metrics

• [Confirms earlier studies, e.g., Lynch et al 2014]

22Figure: Bloomfield et al, 2021, ESSD 

Week # Day #

1 5-11

2 12-18

3 19-25

4 26-32

Winter (DJF) Demand-Net-Wind, weekly-mean
ECMWF forecast, skill w.r.t. climatological forecast



Gridpoint forecast skill
• Evidence for skill (to at least week 2)
• Skill depends on metric chosen

• Typically less skill in more complex metrics

• Question 2: can skill be improved?
a. Pattern-based forecasts
b. Conditional predictability
c. Sequential learning algorithms

23Figure: Bloomfield et al, 2021, ESSD 

Week # Day #

1 5-11

2 12-18

3 19-25

4 26-32

Winter (DJF) Demand-Net-Wind, weekly-mean
ECMWF forecast, skill w.r.t. climatological forecast

See Paula Gonzalez’s 
talk later today



Q2a: Pattern-based forecasting
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Figs: Bloomfield et al (2021)

Predict the large-scale weather 
pattern (weekly-mean)

Use historic (observed) relationship between 
the large-scale weather pattern and the 

energy “impact”



Pattern-forecast skill
• Week 1:

• Pattern forecast outperformed by gridpoint

• ECMWF week 3:
• Significant skill improvement in EnsCorr
• No change in RPSS/CRPSS

• NCEP week 3:
• Significant skill improvement in EnsCorr, 
• Also improvement in RPSS & CRPSS
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Figs: Bloomfield et al (2021)



Pattern-forecast discussion
• Interpretation:

• Forecast = (NWP-derived prediction of large-scale pattern) x (reanalysis-derived impact model)
• NCEP-GFS more biased (w.r.t. ERA5 “truth”) than ECMWF-ER so benefits more from 2-step process

• However: 
• Predictive skill for weekly-weather patterns at leads of 15-20 days
• Weather-patterns with stronger link to energy-system impacts (e.g., TCTs; Bloomfield et al 2019) but with some loss 

of predictive skill (here led to overall weaker performance than standard weather-patterns)
• Challenge: seeking optimal patterns to maximize pattern predictability and energy-system impact
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DJF DNW CRPSS skill assuming perfect pattern forecast
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Standard Weather Regimes Targeted Circulation Types
Weather regime forecast assignment

Figs: Bloomfield et al (2021)



Q2b: Conditional forecasting

27

Predict the large-scale weather 
pattern (weekly-mean)

Use gridpoint forecast only if >50% of weather 
pattern assignments agree on a pattern 

Figs: Bloomfield et al (2021)



Conditional gridpoint forecast skill
• Significant improvement in skill

• ~0.2 RPSSS week 1
• Up to ~0.5 in week 2

• Modest number of forecasts discarded
• 8% week 1
• 28% week 2

• Methodological decisions could be optimized, e.g.:
• Thresholding for discard/accept
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72%Week # Day #

1 5-11
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Winter (DJF) Demand-Net-Wind, weekly-mean RPSS terciles
NCEP forecast skill w.r.t. climatological forecast

Figs: Bloomfield et al (2021)



Figs: Bloomfield et al (2021)

Conditional gridpoint forecast skill
• Significant improvement in skill

• ~0.2 RPSSS week 1
• Up to ~0.5 in week 2

• Modest number of forecasts discarded
• 8% week 1
• 28% week 2

• Methodological decisions could be optimized, e.g.:
• Thresholding for discard/accept
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Winter (DJF) Demand-Net-Wind, weekly-mean RPSS terciles
NCEP forecast skill w.r.t. climatological forecast

Summary for Q2 (skill-enhancement methods)

• Significant possibilities for enhancing “modest skill” NWP at extended range

• Weekly-mean weather regimes predictability at leads of ~10-15 days

• Pattern-forecast “2-step approach” compensates for deficiencies in NWP surface 
representation

• Conditional forecasting enables intelligent use of grid-point forecasts

• Sequential Learning Algorithms (not shown, see Paula’s talk and Gonzalez et al 2021) a 
powerful way to combine forecast systems and statistical predictors with many operational 
advantages
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Forecast skill to forecast value
Question 3. To what extent could skillful subseasonal forecasts potentially produce value in energy market trading?
Unpublished work with James Fallon, but also see Lynch et al (2014) for related discussion

Skill => value… decision?
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Decision modelling
u Enter N-weeks-ahead futures contract then hold until delivery. 
u What is added value of trading on the prices predicted by S2S forecasts compared to the market’s expectation?
u Simplest case using ensemble-mean price forecast – equivalent to, e.g.:

• If S2S forecast ensemble-average suggests future market price is undervalued (forecast price > market price) then buy 
contract for power at market price N-weeks-ahead, then sell contract at the day-ahead spot price

u Many more advanced variants possible!

Close contract:
SELL at new price

Forecast price 
> market price BUY

Forecast price
< market price SELL

Close contract:
BUY at new price

Gain if sign 
of the price 
difference 
correctly 

forecasted

Forecast price N 
weeks ahead.

Time = Week X Time = Week X+N



The “total” value of S2S forecasts
u Applied to German market assumed to have no access to meteorological 

forecasts (market has historic data only)

u Significant value add (c.f., nominal unit price ~€40/MWh)
• Perfect foresight: €10/MWh
• Subseasonal week-2 forecast (days 11-18): €3/MWh

u Caveats:
• Trades every week: not every individual trade “wins”
• Perfect model assumption (predicts simulated prices which exclusively depend 

on weather)
• Market access to forecasts (much of the value “priced in”)



The added value of probabilistic info
u Adjust decision model, trade only if:

• >45% chance in upper/lower tercile
• <20% chance in opposing tercile

u Per-trade value add (c.f., the equivalent ensemble-mean trader)
• Perfect foresight:  ~25% improvement
• Subseasonal week-2 forecast (days 11-18): ~20-30% improvement

u Caveats (as previous but now also):
• Trades only on strong signals è many fewer trades made
• Cumulative value over time less than “ensemble mean” strategy
• Best strategy depends on risk/return preferences

Fraction of possible trades made (%)



The added value of probabilistic info
u Adjust decision model, trade only if:

• >45% chance in upper/lower tercile
• <20% chance in opposing tercile

u Per-trade value add (c.f., the equivalent ensemble-mean trader)
• Perfect foresight:  ~25% improvement
• Subseasonal week-2 forecast (days 11-18): ~20-30% improvement

u Caveats (as previous but now also):
• Trades only on strong signals è many fewer trades made
• Cumulative value over time less than “ensemble mean” strategy
• Best strategy depends on risk/return preferences

Fraction of possible trades made (%)

Value is in the eye of the beholder…

… it depends on what the user wants to achieve.



Forecast value in decision-making
• Need more consideration about how forecast skill propagates into value via decision-making

• Example: telecommunication faults (see Brayshaw et al 2020 for details)
• UK £33bn/year or ~1.5% GDP net economic contribution (Kelly, 2015)
• BT / Openreach responsible for ~90% of fixed line infrastructure
• Weather highlighted as a contributor to increased fault rates
• Associated with service delays, disruptions and challenging conditions

• Seek subseasonal (weeks-ahead) fault rate forecast and establish “value” in maintenance/repair scheduling
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Methodology (abridged)
• Fit statistical relationship between observed faults and reanalysis (here, ERA-Int)

• Establish:
1. ECMWF-ER can skillfully predict weekly-NAO (20yr 11-member hindcasts, system Dec16-Feb17)
2. Weekly-NAO has a strong influence on fault rates
3. Predict NAO then use climatological NAO-faults relationship è skillfully predict weekly fault rates
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Decisions and value
• Goal is fixing faults promptly, not just predicting faults

• Required meet a target for fixing faults within a given window
• Can hire additional engineers but requires notice and incurs a cost

• Toy model of decision process
• Target: fix a fraction (1-l) of incoming faults during any week
• Assume engineers only fix faults (“repair capacity”)
• Unfixed faults carryover into next week and must be fixed before new work
• Can employ ‘extra’ engineers (increase repair capacity) but with 1-week lead

• Aside - real decision is far more complex:
• Daily resolution
• Multi-objective (e.g., same engineers install new lines, with associated targets)
• Decisions on multiple time-horizons from ~week-4 to near real time

37



Week 1 Week 2 …

Work stack, s

Repair assets, r r1

New faults, FR FR1

s1

Decisions model



Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1

New faults, FR FR1

Target failures, a

s1

a1 = Max(0, s1 + FR1 (1-l) – r1)



Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1

New faults, FR FR1

Target failures, a

s1

Need to decide r2 during week 1 
è locks in decision of repair assets one-week in advance

r2

a1 = Max(0, s1 + FR1 (1-l) – r1)



Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1 r2

New faults, FR FR1 FR2
f

Target failures, a

s1
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Forecast fault rate

Forecast failure rate

a1 = Max(0, s1 + FR1 (1-l) – r1)



Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1 r2

New faults, FR FR1 FR2
f

Target failures, a

s1

a2
f = Max(0, s2 + FR2f (1-l) – r2)

Choose r2 as: Min
r2
(cfailα2 + crepairr2 )

rmin ≤ r2 ≤ rmax

Forecast fault rate

Forecast failure rate

a1 = Max(0, s1 + FR1 (1-l) – r1)



Decisions model

Week 1 Week 2 …

Work stack, s s2 = s1 + FR1 – r1

Repair assets, r r1 r2

New faults, FR FR1 FR2
f

Target failures, a a1 = Max(0, s1 + FR1 (1-l) – r1)

s1

a2
f = Max(0, s2 + FR2f (1-l) – r2)

Choose r2 as:

Then step forward to calculate actual a2 using r2 and the actual fault rate FR2 
Iterate over ‘perpetual winter’ from ECMWF hindcasts (neglect end years)

Forecast fault rate

Forecast failure rateMin
r2
(cfailα2 + crepairr2 )

rmin ≤ r2 ≤ rmax



• Experiment: constant contingency
• (rmax-rmin = 0.15 week-1)
• Vary minimum repair capacity (rmin)

• Operational:
• For a given repair capacity, improved 

forecasts reduce target failure rate (~10%, 
up to 100%?)

• è “Better” performance with given 
resources

• Planning:
• For a given target failure rate, improved 

forecasts reduce required repair capacity 
(~1%, up to 5%?)

• è “Reduced cost” for same performance 
level Context: Annual staffing cost ~£500M, max 

penalty for failures up to ~£1M/day 
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Figure: Brayshaw et al 2020



Summary
• Origins of S2S forecasting

• Physical sources
• Scale dependence
• Use of ensembles

• S2S applied to energy
• Skill exists and techniques to enhance (pattern, conditional, SLA etc) but…
• … remains modest and key challenge is finding ways to convert weak skill to strong value-add in decisions

• Contact: d.j.brayshaw@reading.ac.uk; https://research.reading.ac.uk/met-energy/ 
• Online courses: https://www.reading.ac.uk/meteorology/online-courses 
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