

(Areas of expected skill less than 0.3 are shaded in grey.)

S2S in the Solar Community

IEA

VPS

Jan Remund, Task Manager, Meteotest AG

Seasonal Forecasting for the Weather Driven Energy System - 17.05.2023

- IEA PVPS Task 16
 - Team & Work
 - State of PV
- State of Seasonal Solar Forecasts
 - Work within Task 16
 - Review of publications

Current status of team

51 institutions

Science (labs and universities)

Met Services / utilities

Data providers

PVPS

- ST1: Current methodologies for solar data generation
- ST2: Enhancement of data and value-added products
- ST3: Solar forecasting
- ST4: Dissemination and Outreach

Hottest topic: Firm Power Generation: Europe

- Example of a pan-European study from Univ. Utrecht
- Input data for future cost levels are crucial (ATB NREL)
- 29% Europe wide curtailment optimal

	Solar PV	Onshore wind	Offshore wind	Li-on	Hydrogen	
Economic life	30 years	30 years	30 years	15 years	18 years	
WACC	4.4%	4.4%	4.4%	5.0%	5.0%	
CADEX	700 k€/MW	760 k€//MW	1945 k€//MW	243 k€//MW	1300 k€//MW	
OALEX				81 k€/MWh	1 k€//MWh	
O&M	10 k€//MW/y	33 k€//MW/y	71 k€//MW/y	2.5% capex/y	2.5% capex/y	
SoCmin				20%	0%	
SoCmax				100%	100%	
Efficiency				85%	40%	

Report: https://iea-pvps.org/key-topics/firm-power-generation/

Solar Resource Handbook

- Solar Resource Handbook
 - 3rd edition: Spring 2021
 - NREL and IEA PVPS versions
 - 4th version: End of 2023

- Additional: Online archives:
 - Data: www.solarstations.org
 - Code: <u>www.assessingsolar.org</u>

		Small	Medium	Large
	1. Pre-feasibility & Planning	 Long-term averages Monthly data Solar cadastres / maps Simple shading analysis 	 TMY Hourly data Shading analysis 	 Long-term satellite data Hourly data
Phase	2. Feasibility			 Satellite data Time series (>10 y) Ground meas. (> 1 year) Shading analysis Further site and technology specific meteo. parameters (e.g. albedo, soiling)
	3. Due diligence & Finance		 Satellite data Time series (>10 y) Minute data Shading Further site and technology- specific meteo. parameters (e.g. albedo, soiling) 	 Satellite data Time series (>10 y) Ground meas. (>1 year) Minute data Shading analysis Further site and technology-specific meteo. parameters (e.g. albedo, soiling)
	4. Operation & Maintenance	Simple monitoring	Local measurementsForecasts	Local measurementsForecasts

- <u>https://iea-pvps.org/key-topics/best-practices-handbook-for-the-collection-and-use-of-solar-resource-data-for-solar-energy-applications-third-edition/</u>
- https://www.nrel.gov/docs/fy21osti/77635.pdf

Seasonal Solar Forecasts at Task 16

- \bullet Not included in the work plans 2017 2020 / 2020 23
- Not included in the work plan 2023 2026
- Closest activities:
 - PV power forecasting at different spatio-temporal scales
 - Probabilistic solar forecasting
 - Climate change and long-term variability

• Market growth: 20-30% / year

COUNTRIES WITH HIGHEST PV PENETRATION

EVOLUTION OF ANNUAL PV INSTALLATIONS

Ġ

- Work of collaborating partners
 - CMA (own Seasonal Forecast project)
 - Univ. Tor Vergata (EU Project S2S4E Climate Services for Clean Energy)
 - DWD (present in this workshop)

PVPS

- CMA (own Seasonal Forecast project presented in Task Meeting Sept. 22):
 - Monthly mean total shortwave radiation at meteorological stations (1979-2020);
 - ECMWF ERA5 reanalysis dataset, including monthly geopotential heights, wind speed and 2 m air temperature (33 parameters), 2.5×2.5° (1979-2020);
 - MRI-CGCM hindcast data (20 parameters), 2.5×2.5° (1979-2018).

2 m temperature	100 hPa geopotential height	200 hPa geopotential height	200 hPatemperature	
200 hPa U wind	200 hPa V wind	300 hPa geopotential height	500 hPa geopotential height	
500 hPatemperature	500 hPa U wind	500 hPa V wind	850 hPa geopotential height	
850 hPa specific humidity	850 hPa relative humidity	850hPa temperature	850 hPa U wind	
850 hPa V wind	Sea surface pressure	precipitation	Sea surface temperature	
2 m temperature gradient	100 hPa geopotential height	200 hPa geopotential height	100 hPa temperature gradient	
	gradient	gradient		
300 hPa geopotential height	500 hPa geopotential height	500 hPa temperature gradient	850 hPa geopotential height	
gradient	gradient		gradient	
850 hPa temperature gradient	Sea surface pressure gradient	200 hPa wind speed	500hPa wind speed	
850 hPa wind speed			10	

• Anomaly Correlation Coefficient (ACC): patchy: often < 0.4, depending on month and method; random forest regression is best

2017						2018						
	Stepwis e	Random	Gradient	Decision	Bavesia	K-	Stepwis e	Random	Gradient	Decision	Bavesia	K-
	Regres sion	Forest	Boosting	Tree	n Ridge	Neighbo rs	Regres sion	Forest	Boosting	Tree	n Ridge	Neighbo rs
Jan	0.48	0.64	0.66	0.57	0.71	0.39	0.01	0.38	0.12	-0.04	0.02	0.24
Feb	0.63	0.66	0.53	0.47	0.15	0.37	-0.22	0.00	-0.01	0.10	-0.52	0.08
Mar	-0.12	-0.43	-0.38	-0.17	-0.14	-0.01	0.55	0.44	0.33	0.40	0.63	0.40
Apr	0.46	0.45	0.15	0.14	0.60	0.59	-0.50	-0.33	-0.33	-0.41	-0.01	-0.13
May	-0.21	0.05	0.06	0.34	0.16	0.04	0.29	-0.54	-0.67	-0.50	-0.58	0.32
Jun	-0.02	0.12	0.09	0.02	0.25	-0.04	-0.08	-0.14	-0.10	0.15	-0.23	-0.04
Jul	0.48	0.41	0.32	0.21	0.47	0.44	0.24	0.15	-0.01	-0.03	0.05	0.25
Aug	0.04	0.24	0.19	-0.14	0.25	0.16	-0.02	0.53	0.47	0.36	0.35	0.55
Sep	0.33	0.08	-0.10	-0.12	0.07	0.24	-0.19	0.16	0.21	0.16	0.26	0.18
Oct	0.73	0.79	0.80	0.81	0.67	0.59	0.34	0.57	0.51	0.47	0.48	-0.40
Nov	0.25	0.40	0.43	0.44	0.27	0.15	0.33	0.39	0.40	0.50	0.30	0.20
Dec	0.56	0.56	0.54	0.53	0.02	0.55	0.33	0.32	0.38	0.22	0.49	0.56
Ave.	0.30	0.33	0.27	0.26	0.29	0.29	0.09	0.16	0.11	0.12	0.10	0.18

- S2S4E: 1 month lead JJA: ECMWF minus Meteo France correlation diff. vs. ERA5
 - Dotted grip points did not pass significance test at 10% level

- Referenced Papers:
 - Bett et al. 2022: A simplified seasonal forecasting strategy, applied to wind and solar power in Europe. <u>https://doi.org/10.1016/j.cliser.2022.100318</u>
 - Bloomfield et al. 2021: Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries. <u>https://doi.org/10.5194/essd-13-2259-2021</u>
 - Aheli, Das and Somonath Baidya Roy, 2021: Evaluation of subseasonal to seasonal forecasts over India for renewable energy applications. <u>https://doi.org/10.5194/adgeo-56-89-2021</u>

State of Solar Forecasts

Bett et al., 2022: "patchy skill"

State of Solar Forecasts

PVPS

- Correlation with DJF NAO Index
 - Less for solar than for wind, but existing in Mediterranean region

State of Solar Forecasts

- GHI and PV highly correlated
- "If skill is in the underlying climate variable, simple linear regression to make a probabilistic forecast of the energy variable can be used" (slightly abbreviated)

ч,

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

Å Å

- ECMWF: 0.6 (demand: 0.8)
- NCEP: 0.4 (demand: 0.4-0.8)

ECMWF Solar Power

- Bloomfield et al., 2021
- Monthly anomaly correlation coefficient for Solar Power

NCEP Solar Power Generation

ECMWF January Solar Power

Forecast Week

Monthly anomaly correlation coefficient for Solar Power

\'''

1.0

0.8

ACC is zero after 2-3 weeks

State of Solar Forecasts

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

ACC

*****##

Conclusions

- Knowledge of solar production 0.5 3 months ahead is important
- Seasonal Forecasts exist operationally
- Skills are patchy
- PV production linear to GHI / Downward SSW
- Simple methods to calculate ensemble exist
- Still a lot of work to do

https://iea-pvps.org/research-tasks/solarresource-for-high-penetration-and-large-scaleapplications/

Jan Remund, Task Manager

SPLAY S SILISU SAT

Technology Collaboration Programme

Jan.remund@meteotest.ch

- Activity 2.4: New focus on climate change
 - Climate change is visible and will have effect on PV-Production (with life times of 30 y)
 - What's the accuracy of the climate models (hypothesis: not that high)?
 - Are there visible trends where and when? (taking into account the uncertainty)
 - How to use climate model forecasts for resource assessments
 - Similar issue to seasonal forecasts: noise to signal ratio
 - Lead: Kristian Nielsen, DMI

