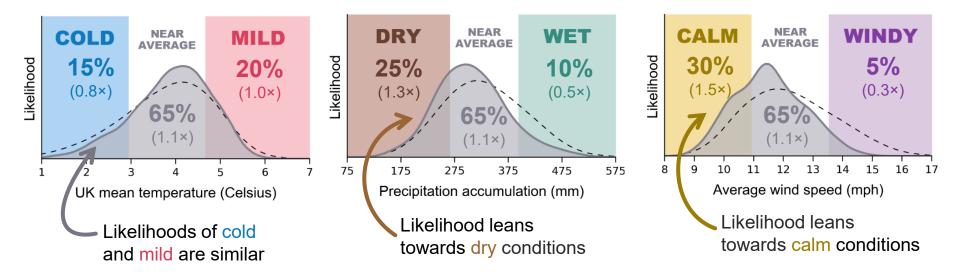

Met Office UK monthly and seasonal forecasts

Exploiting ensembles for studying wind droughts in the North Sea

Nicky Stringer and Gillian Kay

18th May 2023

Seasonal Forecasting for the Weather Driven Energy System University of Reading

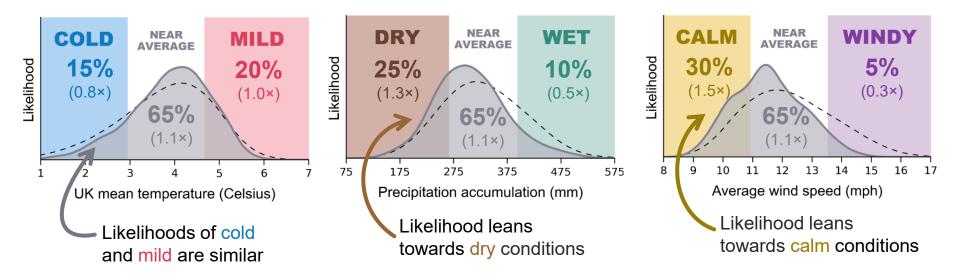


www.metoffice.gov.uk

- UK monthly and seasonal outlook.
 - A look a last winter.
 - North Atlantic Oscillation
 - Drivers of predictability
 - How did it go?
 - Adding wind to the outlook
- Exploiting ensembles to improve understanding of extremes:
 - Potential for prolonged winter wind drought in the North Sea

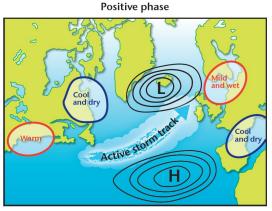
Met Office Forecasts for Dec–Jan–Feb

Coloured categories occur 20% of the time in the 1991–2020 period. "Near-average" occurs 60% of the time.

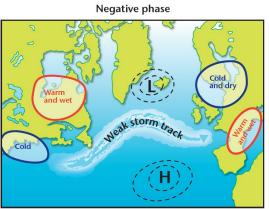

DJF 2022–23 outlook

---- Normal likelihood (1991–2020)

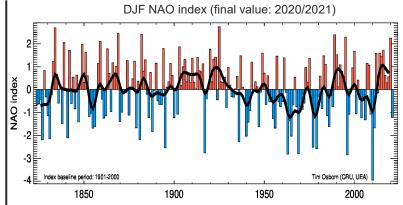
DJF categories for the last 10 years:


2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22
	MILD	NEAR AVERAGE	MILD	MILD	NEAR AVERAGE	MILD	MILD	NEAR AVERAGE	MILD
	WET	NEAR AVERAGE	WET	DRY	NEAR AVERAGE	DRY	WET	WET	NEAR AVERAGE
NEAR AVERAGE	WINDY	NEAR AVERAGE	WINDY	NEAR AVERAGE	NEAR AVERAGE	CALM	WINDY	NEAR AVERAGE	NEAR AVERAGE

Met Office Forecasts for Dec–Jan–Feb



- Greatest chance of impacts from cold weather are in early winter
- There is a reduced chance of wet conditions and impacts from heavy rainfall
- Chances of dry conditions are greater than normal
- Stormy conditions, and impacts from high winds, are less likely than normal


Met Office Hadley Centre The North Atlantic Oscillation (NAO)

- · Enhanced winds from the west
- Milder and wetter conditions
- Higher frequency of wind storms
- Lower frequency of snow
- e.g. winter 2015-2016

- Reduction in winds from the west
- Colder and drier conditions
- Lower frequency of wind storms
- Higher frequency of snow
- e.g. winter 2009–2010

• Explains much of the variability of winter weather in the North Atlantic region.

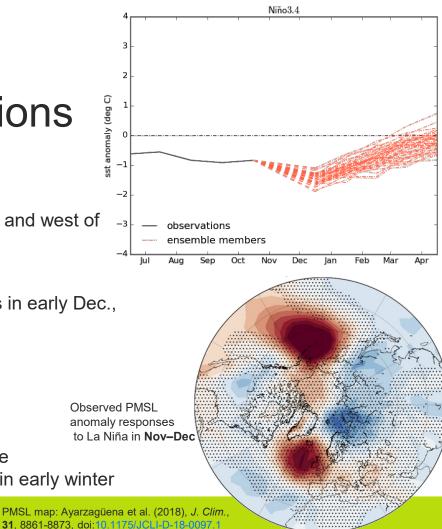
\rightarrow Single most important factor for UK winters

- Seasonal prediction systems, like Met Office GloSea6, have skill in predicting the NAO phase several months ahead.
- \bullet Correlation with obs in DJF is ~0.6

The NAO is clearly related to UK energy: by impacting **wind speeds** and **temperatures**, it affects **energy supply** and **demand**, as well as risks of **infrastructure damage**.

More on climate drivers:

https://www.metoffice.gov.uk/services/government/contingency-planners/seasonal-forecasts-and-climate-drivers-resources

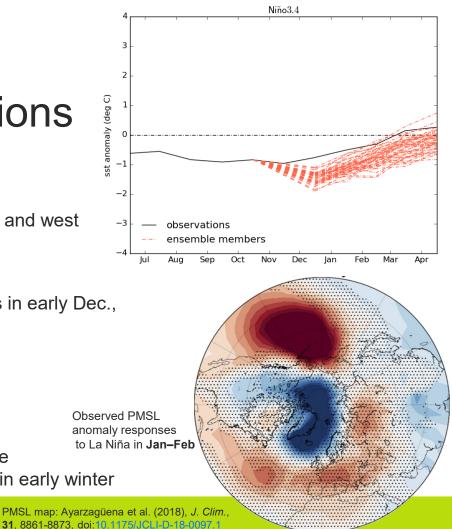


Negative NAO

- La Niña conditions (impact in early winter)
 - → Can bring higher pressure regimes to the north and west of Europe during later autumn/early winter
- Madden–Julian Oscillation (MJO) phase 6–7
 → Increases chance of northerly or easterly winds in early Dec., and therefore an early winter cold snap.

Positive NAO

- La Niña conditions (impact in late winter)
 → Increases likelihood of westerly winds
- Quasi-biennial Oscillation (QBO) in westerly phase
 → Stronger stratospheric polar vortex particularly in early winter

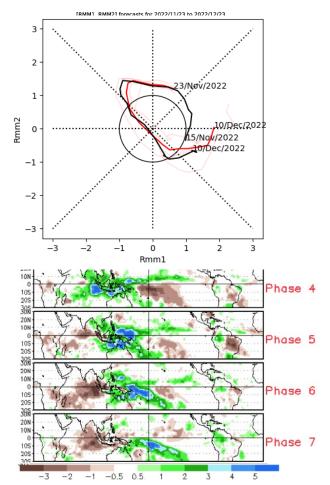


Negative NAO

- La Niña conditions (impact in early winter)
 - → Can bring higher pressure regimes to the north and west Europe during later autumn/early winter
- Madden–Julian Oscillation (MJO) phase 6–7
 → Increases chance of northerly or easterly winds in early Dec., and therefore an early winter cold snap.

Positive NAO

- La Niña conditions (impact in late winter)
 - \rightarrow Increases likelihood of westerly winds
- Quasi-biennial Oscillation (QBO) in westerly phase
 → Stronger stratospheric polar vortex particularly in early winter


Negative NAO

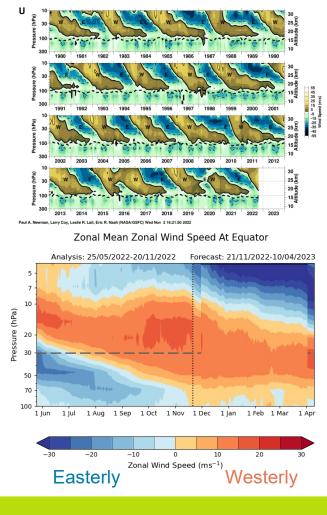
- La Niña conditions (impact in early winter)
 - → Can bring higher pressure regimes to the north and west of Europe during later autumn/early winter
- Madden–Julian Oscillation (MJO) phase 6–7
 - → Increases chance of northerly or easterly winds in early Dec., and therefore an early winter cold snap.

Positive NAO

- La Niña conditions (impact in late winter)
 → Increases likelihood of westerly winds
- Quasi-biennial Oscillation (QBO) in westerly phase
 → Stronger stratospheric polar vortex particularly in early winter

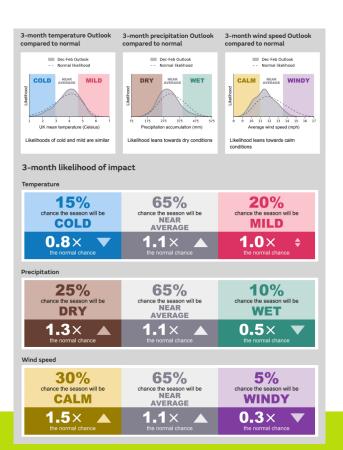
MJO Phase space

Historical average rainfall anomalies in different MJO phases (1979-2012) https://www.climate.gov/news-features/blogs/enso/what-mjo-and-why-do-we-care



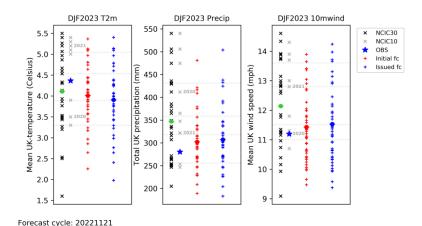
Negative NAO

- La Niña conditions (impact in early winter)
 - → Can bring higher pressure regimes to the north and west of Europe during later autumn/early winter
- Madden–Julian Oscillation (MJO) phase 6–7
 → Increases chance of northerly or easterly winds in early Dec., and therefore an early winter cold snap.

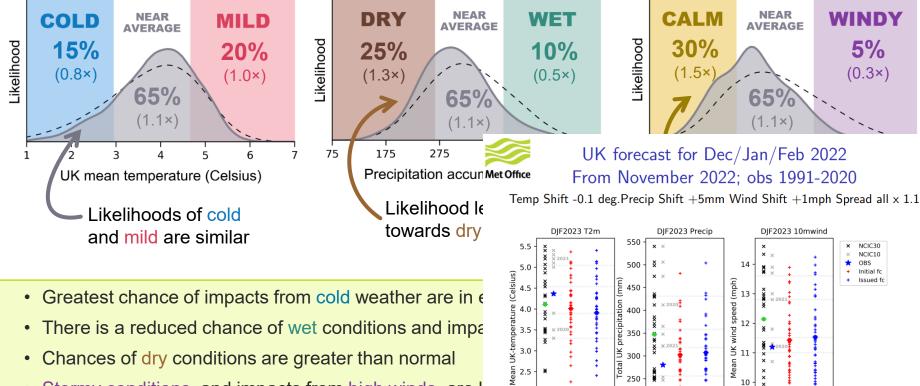

Positive NAO

- La Niña conditions (impact in late winter)
 → Increases likelihood of westerly winds
- Quasi-biennial Oscillation (QBO) in westerly phase
 - \rightarrow Stronger stratospheric polar vortex particularly in early winter

November Forecast for DJF 2022/3



- Near average temperature
- Slightly increased chance of dry
- Decreased chance of a windy/stormy season (first winter we included wind)

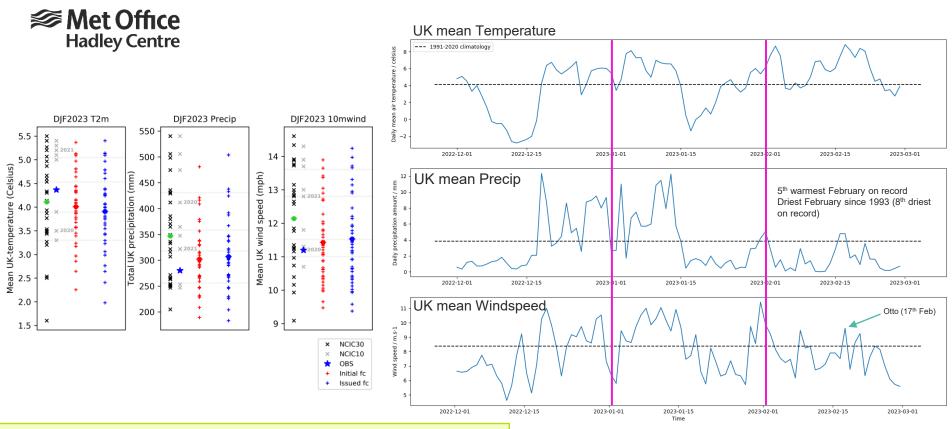


UK forecast for Dec/Jan/Feb 2022 From November 2022; obs 1991-2020

Temp Shift -0.1 deg.Precip Shift +5mm Wind Shift +1mph Spread all \times 1.1

Met Office Forecasts for Dec–Jan–Feb

2.0


1.5

Forecast cycle: 20221121

200

q

Stormy conditions, and impacts from high winds, are I

- Greatest chance of impacts from cold weather are in early winter
- There is a reduced chance of wet conditions and impacts from heavy rainfall
- Chances of dry conditions are greater than normal
- Stormy conditions, and impacts from high winds, are less likely than normal

Potential for prolonged winter wind drought in the North Sea

Gillian Kay, Nick Dunstone, Anna Maidens, Adam Scaife, Hazel Thornton, Doug Smith, Laura Dawkins, Stephen Belcher

Increasing reliance on (offshore) wind energy

- UK has committed to decarbonising the energy system by 2035
- Rapid growth in wind energy in recent years: 24.6% of total electricity generation from wind in 2022; 13.8% from offshore

2.7% (0.8% from offshore) in 2010

Wind power is variable – growing challenge to security of supply

How well are we able to characterise wind variability?

Increasing reliance on (offshore) wind energy

- UK has committed to decarbonising the energy system by 2035
- Rapid growth in wind energy in recent years: 24.6% of total electricity generation from wind in 2022; 13.8% from offshore

2.7% (0.8% from offshore) in 2010

Wind power is variable – growing challenge to security of supply

How well are we able to characterise wind variability?

UNSEEN (UNprecedented Simulated Extremes using ENsembles*) approach:

Using a large ensemble as a synthetic dataset of the current climate that better samples extremes and allows exploration of their dynamics.

*Thompson et al. 2017. High risk of unprecedented UK rainfall in the current climate. Nat Commun 8:107.

Study domain: North Sea; Season: winter

Image credit: Shutterstock

The North Sea is a global hotspot of current and planned offshore wind farms that serve the UK and other European countries.

In winter, periods of **higher demand** tend to coincide with **lower wind power**.

Related to the large-scale weather patterns that affect Northern Europe:

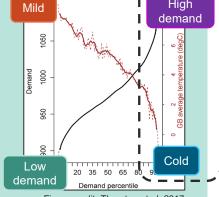
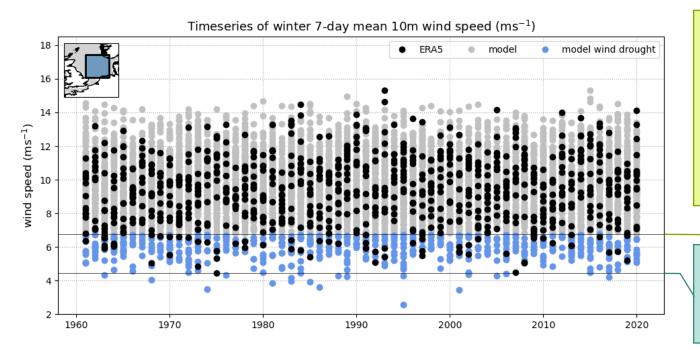
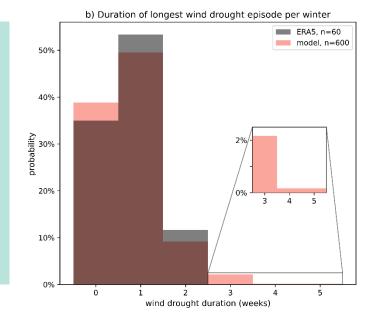



Figure credit: Thornton et al. 2017

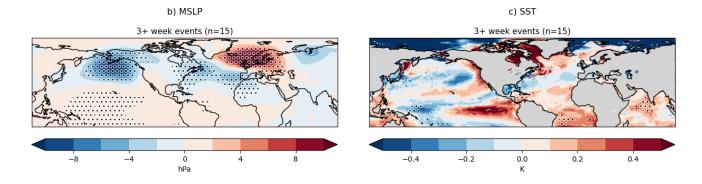
Stronger, warmer, westerly winds Weaker, colder, easterly winds

Weekly mean 10m wind speeds

Wind drought threshold: 20th percentile of ERA5 daily 10m wind speeds.


During wind drought weeks there is a large reduction in power generated compared with a typical winter week

Weekly mean wind speeds below the lowest yet recorded are possible


Persistent wind drought events

- Up to 5 weeks of wind drought possible in a single winter. 4 in the reanalysis.
- Most likely: single-week events.
- Chance of consecutive weeks with very low wind speeds.
- Maximum of 2 weeks seen in ERA5 so far.
- 1-in-40 chance of three or more continuous weeks.
- Worst case: 5 continuous weeks.

Dynamics of prolonged wind drought

Prolonged (3+ week) wind drought events are associated with El Niño-like SST anomalies in the tropical Pacific and an intensified Aleutian Low. Chance of persistent wind drought events doubles during El Niño.

Section summary

- Better information on characteristics of wind variability will be useful in planning a resilient energy system, especially as proportion of wind in the energy mix increases.
- Weeks with winds below the recorded minimum are possible in the current climate.
- The model indicates a 1-in-40 chance of three or more continuous weeks of wind drought each winter, with a worst case of five.
- There is a doubling of the likelihood of these prolonged wind drought events during El Niño.
 - Monitoring and predicting the state of the tropical Pacific may be useful in assessing the risk of wind drought events in an upcoming winter.

Kay, G. et al. 2023: Variability in North Sea wind energy and the potential for prolonged winter wind drought. Atmos. Sci. Lett. e1158. https://doi.org/10.1002/asl.1158