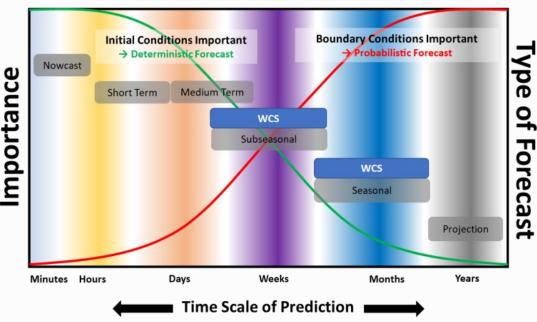
# NOAA's Subseasonal-to-Seasonal (S2S) Forecasting Overview

#### **Dave Turner**

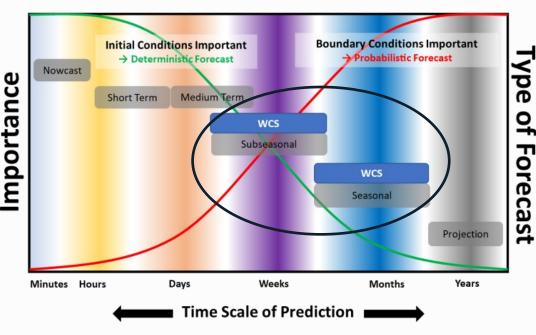
Senior Scientist, NOAA Global Systems Laboratory Atmospheric Science for Renewable Energy Program Manager




Xiaosong Yang, NOAA Geophysical Fluids Dynamics Laboratory Ben Green and Shan Sun, NOAA Global Systems Laboratory

17 May 2023

#### Defining the terms


- Nowcast: minutes to 1 hour
- Short-range: 1 hour to 48 hours
- Medium-range: 2 days to 2 weeks
- Sub-seasonal: 3-4 weeks
- Seasonal: 1 month to 1 year
- Decadal: 1 year to 15 years



## Defining the terms

- Nowcast: minutes to 1 hour
- Short-range: 1 hour to 48 hours
- Medium-range: 2 days to 2 weeks
- Sub-seasonal: 3-4 weeks
- Seasonal: 1 month to 1 year
- Decadal: 1 year to 15 years

#### Land conditions very important (also vegetation) Ocean conditions very important

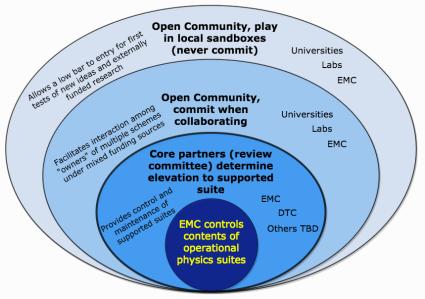




#### Model physics development

- Most model physics development takes place for systems run on timescales of global weather (< 2 weeks), or even shorter: not as much at S2S+ timescales
  - Why? Mostly practical: shorter timescales = more/faster runs
- Physics development for S2S out to climate scales evolves much more slowly, and separately from NWP (weather) timescale
- Paradigm shift (at least at operational centers): consolidate modeling systems (dynamical cores, andsubgrid-scale physics) to run across many timescales-"minutes-to-millenia"
- Leverage paradigm shift to look at model physics at subseasonal timescales




## Paradigm shift at NOAA: Moving to UFS...

- NOAA is moving its modeling suite to the Unified Forecast System (UFS)
  - Replaces multiple models / domains / timeranges / DA methods with single systems
  - O Current applications are: hurricane, shortrange, medium-range, seasonal-range
- Currently in operations in NOAA:
  - Medium-range: out to 16 days done byatmosphere+wave GFS/GEFS
  - Seasonal-range: out to 45 days (and beyond) done by **fully-coupled CFSv2**
- By FY2024, all of NOAA's operational global Earth system prediction for lead times from 0-35+ days will be consolidated into a single UFS-based model (GEFSv13)
  - O Challenge: Ensure model has "reasonable" skill from daily tosubseasonal time scales

| NPS Modeling       | Current   | Q4    | Q1        | Q2          | Q3         | Q4          | Q1        | Q2    | Q3      | Q4                                       | Q1    | Q2       | Q3         | Q4        | Q1    | Q2   | Q3       | UFS          |
|--------------------|-----------|-------|-----------|-------------|------------|-------------|-----------|-------|---------|------------------------------------------|-------|----------|------------|-----------|-------|------|----------|--------------|
| System             | Version   | FY 22 | FY 23     | FY 23       | FY 23      | FY 23       | FY 24     | FY 24 | FY 24   | FY 24                                    | FY 25 | FY25     | FY25       | FY 25     | FY 26 | FY26 | FY26     | Application  |
| Global Weather,    | GFS/      |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      |          |              |
| Waves & Global     | GDASv16.1 |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      |          |              |
| Analysis           |           |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      |          | UFS Medium   |
| Global Weather and |           |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      |          | Range &      |
| Wave Ensembles,    |           | (     | Coupled R | eanalysis a | nd SubX Re | eforecast P | roduction |       |         |                                          |       |          |            |           |       |      |          | Sub-Seasonal |
| Aerosols           | GEFSv12   |       |           |             |            |             |           |       | GFSv17/ | Seasonal Referencest Production GES/(19/ |       |          |            |           |       |      |          |              |
| Short-Range        |           |       |           |             |            |             |           |       | GEFSv13 |                                          |       | ocasonai | References | Troutenon |       |      | GEFSv14/ |              |
| Regional Ensembles | SREFv7    |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      | SFSv1    |              |
| Global Ocean &     |           |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      | 35341    |              |
| Sea-Ice            | RTOFSv2   |       |           |             | RTOFSv3    |             |           |       |         |                                          |       |          |            |           |       |      |          | UFS Marine & |
| Global Ocean       |           |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      |          | Cryosphere   |
| Analysis           | GODASv2   |       |           |             | GODASv3    |             |           |       |         |                                          |       |          |            |           |       |      |          |              |
|                    | CDAS/     |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      |          |              |
| Seasonal Climate   | CFSv2     |       |           |             |            |             |           |       |         |                                          |       |          |            |           |       |      |          | UFS Seasonal |

## Paradigm shift at NOAA: Moving to UFS and CCPP

- Using Common Community Physics Package (CCPP) interface to couple physics to the dycore
- Strips (atmospheric) physics out of dynamical core; allows for easy replacement of physics *schemes* and entire physics *suites*
- Common framework used by operations (NOAA/EMC) and research partners

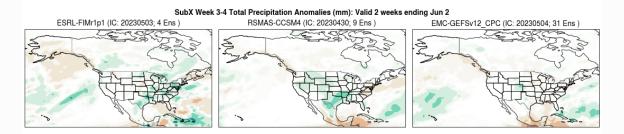


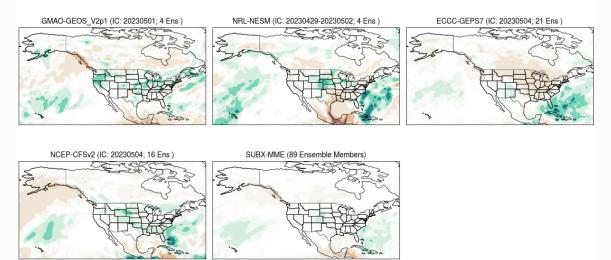


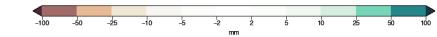


#### Standard output fields for Subseasonal Forecasts

| On 500 and 200 hPa levels |                       |                 |                |                                                    |                     |                         |  |  |
|---------------------------|-----------------------|-----------------|----------------|----------------------------------------------------|---------------------|-------------------------|--|--|
| Variable                  | Abbrev                | Unit            | Frequency      |                                                    |                     |                         |  |  |
| Geopotential Height       | zg                    | m               | Average of Ins | tantaneous v                                       | alues at 0,6,12,18Z |                         |  |  |
| On 850 and 200 hPa levels |                       |                 |                |                                                    |                     |                         |  |  |
| Variable                  | Abbrev                | Unit            | Frequency      |                                                    |                     |                         |  |  |
| Zonal Velocity            | eastward_wind         | ua              | ms-1           | ms-1 Average of Instantaneous values at 0,6,12,18Z |                     |                         |  |  |
| Meridional Velocity       | northward_wind        | va              | ms-1           | Average of Instantaneous values at 0,6,12,18Z      |                     |                         |  |  |
| On a single level         |                       |                 |                |                                                    |                     |                         |  |  |
| Variable                  |                       | CF Standard I   | Name           | Abbrev                                             | Unit                | Frequency               |  |  |
| 2m Temperature            | air_temperatur        | e               | tas            | к                                                  | Daily Average       |                         |  |  |
| Precipitation             |                       | precipitation_f | lux            | pr                                                 | kgm-2s-1            | Accumulated every 24hrs |  |  |
| Surface Temperature (S    | ST+Land)              | surface_tempe   | erature        | ts                                                 | к                   | Daily Average           |  |  |
| Outgoing Longwave Ra      | disting at tag of Atm | toa_outgoing_   |                | flux rlut                                          | Wm-2                | Accumulated every 24hrs |  |  |





## Sub-X Project


- Weeks 3-4 predictability for T2m (and especially QPF) is very low
- Mid-latitude subseasonal predictions rely heavily on teleconnections with tropics
- Mass/momentum biases might give some insight into global teleconnections
- Routine comparison of subseasonal (weeks 34) T2M and precip anomalies from multiple modeling groups (been doing this for multiple years)
- Ensembles important to provide probabilistic information
  - Initial conditions, stocastic physics
  - Multi-physics
- Gain insights on the error characteristics, which can be addressed in the model physics



#### Example: Precip Anomaly: Valid 2-weeks ending 2 Jun 2023

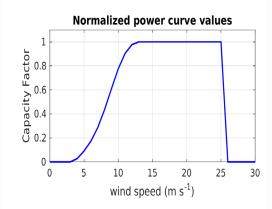








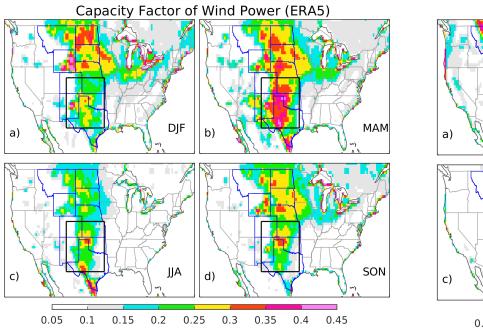
#### Example: T2m Anomaly: Valid 2-weeks ending 2 Jun 2023



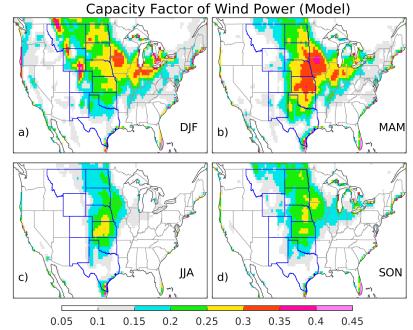



Differences like this occur regularly! No particular pattern among the models Continual work to identify error sources

## **Changing Gears: Seasonal Wind Energy Forecasts**


- Research project at NOAA's Geophysical Fluid Dynamics Lab (GFDL)
- Using their Seamless System for Prediction and Earth System Research (SPEAR) model
- Resolutions: Atmos/Land (about 50km, 33 levels) and Ocean/Ice (about 1°, 75 layers)
- SPEAR's seasonal retrospective forecasts (Lu et al. 2020)
  - 12-month forecast initialized on ft day each month from 1991 to present
  - 15 members
  - O Real-time forecast for North American Multi -Model Ensemble
- Capacity factor (CF): an indicator of wind energy as a function of wind speeds at the turbine height (about 80-100 meters).
- Skill assessment
  - Target season: December-February (DJF), MarchMay (MAM) (19922022)
  - Verification data: the ERA5 reanalysis
- Predictability source analysis (major largescale climate modes)
  - ENSO leading source of boreal winter storm track predictability
  - O North Pacific Oscillation (NPO): impact on winter SAT and storm tracks over North America
  - O North Atlantic Oscillation (NAO):storm tracks over the far Northeastern United States and Canada



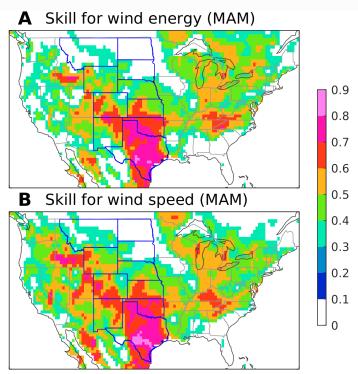



### Predicting the Seasonal Climatology of Capacity Factor

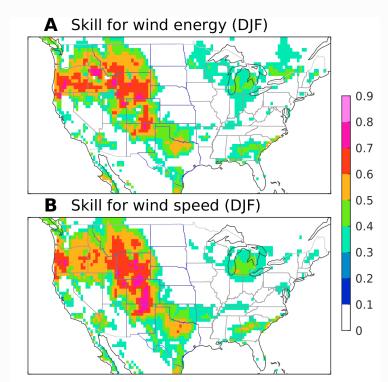
#### Truth (from ERA5)



#### **Seasonal Predictions from SPEAR**





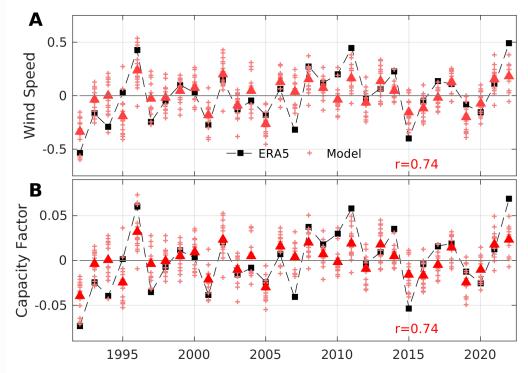


Statistics computed over 30 years

## Correlation (skill) in predicting wind and capacity factor

#### **Spring Season**



#### Winter Season






Statistics computed over 30 years Correlation between (ERA5 reanalysis) vs (SPEAR Seasonal Predictions)

#### Seasonal prediction of CF over the Southern Great Plains

- Over the southern Great Plains, the CF is highly predictable with a correlation skill of 0.74.
- The CF over the southern Great Plains is significantly correlated with ENSO (r=0.61).
- Other significant contributions from PNA and NAO.





### What do we need from S2S outlooks for wind energy?

- S2S forecasts need to be used at larger spatial scales
  - How do we imagine these outlooks will be used?
- Knowing how the 3-4 week (or 2 to 12 month) forecasts will be used will help with both
  - Outlook verification
  - Model development
- Example: Wind droughts for planning
- Almost never evaluate S2S models using contingency tables
- Need to consider conditional verification, wherein we evaluate outlooks as function of driver
  - E.g., state of the ENSO
- Post-processing (e.g., bias correction) and use of machine learning approaches should help extract extra value

### Summary

- NOAA is splitting the subseasonal to-seasonal forecast needs into two systems
  - Subseasonal (34 weeks outlooks): By the UFS medium range forecast system
    - Very active research on improving physics and building a skillful ensemble
  - Seasonal (2 months to 2 years): Starting a new effort to create a Seasonal Forecast System (SFS)
    - Will ultimately replace the current operational CFS for seasonal outlooks (planned for FY 2026)
- Predictability at these longer (S2S) time ranges is low
  - Some variables show some predictability based upon global teleconnection patterns
  - ENSO (seems very important), Pacific North American (PNA), North Atlantic Oscillation (NAO)
  - SPEAR seasonal wind outlooks show some skill at predicting turbine capacity factor (very experimental)
  - Ensembles will be key to quantify probabilities
  - Machine learning techniques are providing clues to when these models have more skill (not shown)
- Verification is key to improving these modeling systems and outlooks
  - $\circ$  No one model seems better than another at either subseasonal or seasonal outlooks
  - O Errors depend on variable (phenomenon) of interest, geographic location, lead time
  - Many errors at these longer time-range are due to compound events (e.g., rain followed by drydown)
  - Need more methods to evaluate these longer forecasts, esp for compound events