Introduction and Example Performance

Evaluation for met data at Fino & Alpha Ventus

RAVE Workshop Hamburg 11. May 2023

LSEVIER

Corinna Möhrlen John W. Zack Gregor Giebel

IEA Wind Task 51

IEA Wind Recommended Practice for the Implementation of Renewable energy Forecasting Solutions

IEA Task 51 - Forecasting for the weather driven Energy System

Forecasting in the design

phase (WP3)

What is the IEA (International Energy Agency)? (www.iea.org)

- International organization within OECD with 30 members countries and 8 associates
- Promotes global dialogue on energy, providing authoritative analysis through a wide range of publications
- One activity: convenes panels of experts to address specific topics/issues

Task 51: Forecasting for the weather driven Energy System:

- One of 17 Tasks of IEA Wind: https://iea-wind.org/
- Task 36: Phase 1: 2016-2018; Phase 2: 2019-2021 Task 51: Phase 3: 2022-2025
- Operating Agent: Gregor Giebel of DTU Wind Energy
- Objective: facilitate international collaboration to **improve wind energy forecasts**
- Participants: (1) research organization and projects, (2) forecast providers, (3) policy-makers and (4) end-users & stakeholders

Task 51 Scope: 3 "Work Packages" / 13 "Workstreams"

- WP1: Global Coordination in Forecast Model Improvement
- WP2: Benchmarking, Predictability and Model Uncertainty
- WP3: Optimal Use of Forecasting Solutions

Task homepage: <u>https://iea-wind.org/task51</u>

Recommended Practice Book

Note

Elsevier Book

https://www.elsevier.com/books/iea-wind-re commended-practice-for-the-implementatio n-of-renewable-energy-forecasting-solution s/mohrlen/978-0-443-18681-3

Online OpenAccess:

https://www.sciencedirect.com/book/9780443186 813/iea-wind-recommended-practice-for-the-impl ementation-of-renewable-energy-forecasting-sol utions

IEA Wind Task 51 Information iea-wind.org \rightarrow Task 51 \rightarrow Publications \rightarrow Recommended Practice

IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions

Corinna Möhrlen John W. Zack Gregor Giebel

IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions: Set of 4 Parts

Video Introduction

Introduction: https://www.youtube.com/watch?v=XVO37hLE03M

Summary & Introduction of the IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting - **Part 4**:

Meteorological Data Requirements to be provided in the grid codes for real-time forecasting models

Data Requirements to be provided in the grid codes for real-time forecasting models

- BACKGROUND -

Combination of **actual wind measurements + trend from wind forecast** provide necessary input to a number of areas in grid operation: e.g.

- forecast of high-speed shut-down events
- strong ramping events
- potential power computation
- compensation for curtailments
- etc.

Currently every ISO/TSO has to develop their own requirements for the grid code

 \rightarrow a industry guideline would make this process much more efficient!

The most common instrumentation and their applicability

Met Masts cup/sonic anemometer

Nacelle instrumentation cup/sonic anemometer computation via pressure

Remote Sensing LiDAR SODAR RADAR

Part 4: Meteorological and Power Data Requirements For Real-time Forecasting Applications

Target: Provide guidance for deploying and operating on-facility meteorological sensors to gather data for input into renewable power forecasts

Content:

- **1.** Background and Objectives
- 2. Meteorological Instrumentation for Real-Time Operation
- 3. Power Measurements for Real-time Operation
- 4. Measurement Setup and Calibration
- 5. Assessment of Instrumentation Performance
- 6. Best Practice Recommendations
- 7. Examples of System Operator Measurement Requirements

RENEWABLE ENERGY FORECASTING SOLUTIONS - Part 4: Meteorological and Power Data Requirements for real-time forecasting Applications-

RECOMMENDED PRACTICES

FOR THE IMPLEMENTATION OF

I. DRAFT EDITION 2021
Draft for Review by Stakeholders prior to submission to the
Executive Committee of the International Energy Agency
Implementing Agreement in September 2021

Prepared in 2021 as part of the IEA Wind Task 36, WP 3.3.

Review of instrumentation and industry Best Practice

Meteorological Mast

Well known and tested

Standards for instruments

Remote Sensing Instruments

Less known in Wind Applications

Meteorologically interesting

Standards need to be adjusted for wind applications

Nacelle Instruments

Relative new application

"old" technology (cup anemometer) insufficient

advantages not tested for forecasting/grid security

Nacelle mounted instrumentation:

- Horizontally mounted lidars

- ground based lidars and sodars

Assessment of instrumentation performance

- yaw misalignment of wind turbine for scanning lidar

Quality control:

- specific quality control procedures for lidars

1st Real-world Application:

Recommendations are implemented by Irish TSOs, where **remote sensing is allowed as alternative** to met masts:

Information: "Eirgrid Met Mast and Alternatives Study" in 2019 (Online: Study and a journal article in coming soon in a Special Issue at the OpenAccess Journal IET Renewable Power Generation) and Irish GridCode for Meteorological Measurements (WFPS Meteorological Signals Guidelines)

Findings from analysis of different measurement types in real-time environments

Remote sensing instruments are about to be mature for real-time operation, but require more testing and pilots...

Just 2 typical challenging situations in a quality analysis...

Outliers on both Metmast & Lidar...

Difference between anemometer and Lidar is == difference to forecast

Findings from analysis of measurement types

Remote sensing instruments are mature for real-time operation, but require further development for application in power grid operation:

- measurements must be raw or technical requirements must include delivery of maintenance and software updates
- lightning protection and recovery strategy after lightning
- measurements should be taken at several heights to take advantage of the instrument type
- instruments must be serviced and maintained by skilled staff
- version control must be maintained for signal processing
- wind characteristics data must be on wind turbine level
- LiDARs and SODARs in complex terrain require special consideration and testing

Requirement suggestions for wind farm accuracy of measurement instrumentation

Measurement	Units	Precision for Instantaneous Measurements (to the nearest)	Range	Accuracy	Required /Optional
Wind Speed	Meters/Second (m/s)	0.1 m/s	0 to 50	±1m/s	R
Wind Direction	Degrees from True North	1 degree	0 to 360	±5°	R
Surface Pressure	HectoPascals (HPa)	1 hPa	800-1100	± 1.0 hPa at -20 45 °C	R
Temperature	Degree Celsius	0.1° C	-50 to +50	±0.2 K in the range -27 +50°C	R
Dewpoint	Degrees Celsius (°C)	0.1° C	-50 to +50	±0.2 K in the range -27 +50°C	о
Relative Humidity	Percentage (%)	1.00%	0 to 100 %	±2% RH in the range 5- 95% RH at 10-40°C	о
Ice-up Parameter	Scale 0.0 to1.0	0.1	0 to 1	n/a	<mark>O</mark> /R
Precipitation	mm/min	0.1	0-11	2% until 25 mm/h 3% over 25 mm/h	0

Representativeness of measurements and fit to realtime NWP Forecasting

Background information about the relevance of measurement heights for the weather models

Lowest 3-4 model levels are always in the range 30-40|90-100|170-180m → common for all NWP models

Downscaling from model levels usually better than up-scaling from 10m wind! \rightarrow 10m wind is a standardised, but calculation method for fixed heights

Quality control of meteorological measurements in the real-time environment

			stanc Dat	ling a	Equipment*			Met variables to be delivered							
TSO/ISO	threshold [MW]	frequency [sec]	geodata per wind farm	geodata per turbine	met mast	nacelle	other	WS	wd	T2m	PS	DP	HUM	other	location agl
AESO	5	600	1	0	1	0	0	1	1	1	1	1	1	iceup	hub/2m
CAISO	1/5	4	1	1	1-2	1	0.5	1	1	1	1	0	0	0	hub(+10m)/2m
BPA	20	60	1	1	1	1	1	1	1	1	1	0	1	0	hub/2m
ERCOT	1	300	1	0	1	0	0	1	1	1	1	0	0	0	hub/2m
NYISO	1	30	1	0	1	0.5	0.5	1	1	1	1	1	1	0	hub/2m
РЈМ	10/100	10/2	1	0	1	0	0	1	1	1	1	0	0.5	0	hub/2m
HECO	all	900	1	0	1	0	1	1	1	1	1	0	0	0	hub+windNET
EIRGRID /SONI	10	5	1	0	0	0	1	1	1	1	1	0	0	0	hub(min35m)/2m
LITG	20	300	1	0	0	2	0	1	1	1	0	0	0	0	nacelle

*equipment with a number < 1 means that it is allowed to use other equvivalent equipment to a met mast

Quality control of meteorological measurements in the real-time environment: Assessment of instrumentation performance

- Measurement data processing
- Uncertainty expression in measurements
 - ➔ Known issues of uncertainty in specific instrumentation
 - → Effects of uncertainty in nacelle wind speed measurements and mitigation methods
 - ➔ Application of nacelle wind speeds in real-time NWP data assimilation
- General data quality control and quality assurance (QCQA)
 - → Historic quality control (QC)
 - → Real-time quality control (QC)
 - Data screening in real-time wind and solar forecast applications
 - Data sampling thresholds in real-time wind and solar forecast applications

Quality control of meteorological measurements in the real-time environment: Assessment of instrumentation performance

1. System Operation, Balancing and Trading

- Situational awareness in critical weather events
- High-Speed Shutdown events
- Grid related down-regulation or curtailments
- Short-term forecasting with updates from measurements
 - Intra-day power plant balancing

2. Wind Turbine, Wind Farm and Solar Plant Operation and Monitoring

- Wind turbine and Power Plant Control
- Condition Monitoring

Quality control of meteorological measurements in the real-time environment: Recommended Principles for the Selection of Instrumentation

The recommendations for the selection of instrumentation based on the following set of principles:

1. Accuracy requirements:

Accuracy requirements need to be defined for the application/project and aligned with the associated levels of effort necessary to operate and maintain the measurement system on under these constraints. An overall cost-performance determination should therefore always be carried out to adapt the budget to the accuracy requirements and vice versa.

2. Reliability requirements:

Reliability can be achieved with redundant instrumentation and/or high quality instrumentation. Redundancy enhances and ensures confidence in data quality. Selection of multiple instruments need to be aligned with the accuracy needs.

Quality control of meteorological measurements in the real-time environment: Recommended Principles for Wind Power Performace Control

a) Measuring basic meteorological parameters that can be used to compute power generation output

- wind speed and direction
- air temperature
- barometric pressure
- relative humidity

b) Conversion of the meteorological parameters into a power output

The best and recommended way is the IEC 61400-12-1 standard on power performance measurements, which is based on a physical formula (Equ. 2, chapter 8 [142])

c) Comparison of power output with measured and forecasted input variables

d) Visual Inspection with Ensemble generated Percentiles

Example Alpha Ventus +Fino1: Quality control of meteorologica measurements in the real-time environment: Recommended test for WEPROG data performance control

IWES

Explanation of Available/missing Variables:

0 or -	bad/missing
1	windspeed (ws)
2	temperature (T)

3	ws+temperature
4	wind direction (wd)
6	wd + T
8	pressure (ps)
5	ws+ps
10	T+ps

11	ws+T+ps	
12	wd+ps	

- 13 ws+wd+ps
- 14 T+wd+ps
- all variables delivered 15

1=ok, 0=bad, "-"=missing

			STATISTICS							
ID Period	PART 1 (ws,T2m,wdi r,ps)	WindSPEED (bias, rmse,corr Realistic values)	Temperature (bias, rmse,corr Realistic values)	WindDIR (bias, rmse,corr Realistic values)	Pressure (bias, rmse,corr Realistic values)	Installed Capacity [MW]	Improve- ment >5%	Delivery Rate [%]	BIT MASK	
				Good DAT	4					
2021q3 WAVUWT001 capacity	1111	1111	1111	1111	1111	60.0 60	2.19	99.8	15	
Bad DATA MiSSING DATA + Delivery < 98.5%										
2021q2 WAVM8T001 WAVM7T001 capacity	1001 1001	1111 1111	0001 0001	0001 0001	1111 1111	5.0 5.0 0	6.57 6.14	10.6 11.4	9 9	
Bad Data Missing data + Requirement 2: Improvement < 5%										
2021q1 WAVM7T001	0101	0111	1111	1001	1111	5.0	0	47.7	10	

Explanation of columns WS WDIR TEMP PS							
1	BIAS						
2	RMSE						
3	CORR						
4	4 data delivery of realistic values						
1=ok, 0=bad, "-"=missing							

Quality control of meteorological measurements in the real-time environment

- **Observations:**

Example Alpha Ventus + Fino1: Quality control of meteorological measurements in the real-time environment

Criteria for "goodness" of data

Variable	unit	lower Limit	upper Limit
Wind speed (WS)	m/s	0	40
Wind direction (WD)	deg	0	360
Temperature (T)	°C	-40	40
Surface pressure (PS)	hPa	800	1100

We reverse verification: measurement versus forecasts!

Variable list and	Var Number	Variable Name	Mininum Correlation	Maximum Bias	Maximum MAE
their threshold error	1	WindSpeed	0.65	3.0	3.0
limits	2	AirTemp	0.75	2.0	2.5
	3	WindDirection	0.55	13.0	20.0
	4	AirPressure	0.9	50.0	85.0

Exemplary results from the Quality analysis of 6 Turbines & UW

Statis -tic rank	Windfarm ID	Test: ws temp wd ps	wind speed WS	temp- erature T	wind direction WD	surface pressure PS	Description
1	AV07	1111	111	111	111	111	all tests ok
2	AV08	1111	111	111	111	111	all tests ok
3	UW	1110	111	111	111	000	PS fails all tests
4	AV09	1101	111	111	100	111	WD fails, except for WD(BIAS) OK
5	AV10	1101	111	111	101	111	WD fails, except for WD(MAE) OK
6	AV11	1010	111	000	111	110	T fails on all
7	AV12	1001	111	000	101	111	T fails and WD(MAE) fails

Fino data: Wind, Temperature and Pressure Turbines/UW: Wind & Power

Quality control of meteorological measurements in the real-time environment: CONCLUSIONS & OUTLOOK

Application Areas for the Recommendations

1. System Operation, Balancing and Trading

- Situational awareness in critical weather events
- High-Speed Shutdown events
- Grid related down-regulation or curtailments
- Short-term forecasting with updates from measurements
 - Intra-day power plant balancing

2. Wind Turbine, Wind Farm and Solar Plant Operation and Monitoring

- Wind turbine and Power Plant Control
- Condition Monitoring

THANK YOU FOR YOUR ATTENTION

Follow us:

Project webpage: http://iea-wind.org/task51

Task-page: https://iea-wind.org/task51/task51-publications/task51-recommended-practices/

Publications: <u>https://iea-wind.org/task51/task51-publications</u>

Contact us...

Co-authors:

Dr. John W. Zack WP2 Leader MESO, Inc., USA jzack@meso.com

Dr. Gregor Giebel Operating Agent DTU Wind, Denmark grgi@dtu.dk

BACKUP SLIDES

Example Ireland: Quality control of meteorological measurements in the real-time environment

Variable list and	Var Number	Variable Name	Mininum Correlation	Maximum Bias	Maximum MAE
their threshold error	1	WindSpeed	0.65	3	
limits	2	AirTemp	0.75	2	2.5
	3	WindDirection	0.55	13	20
	4	AirPressure	0.9	50	85

Exemplary results from the Quality analysis of 15 selected sites

Stat- Istic rank	Windfarm ID	Test: ws temp wd ps	wind speed WS	temp- erature T	wind direction WD	surface pressure PS	
1	IE001	1111	111	111	111	111	all tests ok
2	IE012	1111	111	111	111	111	all tests ok
3	IE002	1111	111	111	111	111	all tests ok
4	IE003	1111	111	111	111	111	all tests ok
5	IE009	1111	111	111	111	111	all tests ok
6	IE005	1110	111	111	111	000	PS fails all tests
7	IE007	1101	111	111	100	111	WD fails, except for WD(BIAS) OK
8	IE010	1101	111	111	101	111	WD fails, except for WD(MAE) OK
9	IE006	1101	111	111	101	111	WD fails, except for WD(MAE) OK
10	IE013	1101	111	111	101	111	WD fails, except for WD(MAE) OK
11	IE011	1101	111	111	000	111	WD fails
12	IE015	1101	111	111	001	111	WD fails, except for WD(CORR) OK
13	IE014	1011	111	000	111	111	T fails on all
14	IE008	1010	111	000	111	110	T fails on all
15	IE004	1001	111	000	101	111	T fails and WD(MAE) fails

Criteria for "goodness" of data

Variable	unit	lower Limit	upper Limit
Wind speed (WS)	m/s	0	40
Wind direction (WD)	deg	0	360
Temperature (T)	°C	-40	40
Surface pressure (PS)	hPa	800	1100

Review of instrumentation and industry Best Practice

Cup anemometers

well tested and standardised

IEC 61400-12-1/2 and ISO/IEC 17025 standards describe how these instruments must be:

- calibrated
- mounted
- describe the process and the integrity of the measurement processes
- describe design of mast, instruments and measuring procedures.

3D sonic anemometers have:

long tradition in atmospheric science and meteorology

- boundary layer studies of turbulence intensity
- phenomena like low level jets

Review of instrumentation and industry Best Practice

The iSpin technology claims to solve the following issues:

- monitor the air density corrected power curve
- monitor and correct yaw misalignments
- Observe turbulence intensity allowing you to make informed choices between power production and reduced turbine loads
- Monitor flow inclinations

Most critical for forecasting application:

- computation of flow
- not proven in real-time yet

Findings from analysis of measurement types

Identified issues with **nacelle mounted measurements**:

- **induction**: nacelle measurement errors followed in large the angle of pitched blades (5% pitched blades equivalent 5% measurement error)
- **flow disturbances**: changing direction gives changing inclination angles and wrong changes in wind speeds
- **wake effects** from other turbines and of cup anemometers, where the turbine was subject to wake effects at certain directions

over-speeding of cup anemometer with errors > 10%

offsets in wind direction

snow and icing

Findings from analysis of remote sensing measurement types

Findings from analysis of **remote sensing instruments**:

ADVANTAGES Availability of vertical wind profile information

Volume-averaged versus point measurement

No planning permission required

DISADVANTAGES Variable data quality

Data outages correlated with specific weather types

Data frequency

The instruments are interesting, especially for situational awareness, but show highest reliability issues under specific weather situations --→ NOTE: LIDARs and SODARs complement each other

