IEA Wind Task 51

IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions

IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions

Hands-on examples for the use of the guideline

Corinna Möhrlen John W. Zack Gregor Giebel

Mathias Blicher Bjerregaard

Windintegration Workshop Kgs. Lyngby, Denmark, 25. Sept. *2023*

IEA Wind Task 51: Forecasting for the weather-driven energy system

What is the IEA (International Energy Agency)? (www.iea.org)

- International organization within OECD with 30 members countries and 8 associates
- Promotes global dialogue on energy, providing authoritative analysis through a wide range of publications
- One activity: convenes panels of experts to address specific topics/issues

Task 51: Forecasting for the weather driven Energy System:

- One of 17 Tasks of IEA Wind: https://iea-wind.org/
- Task 36: Phase 1: 2016-2018; Phase 2: 2019-2021 Task 51: Phase 3: 2022-2025
- Operating Agent: Gregor Giebel of DTU Wind Energy
- Objective: facilitate international collaboration to **improve wind energy forecasts**
- Participants: (1) research organization and projects, (2) forecast providers, (3) policy-makers and (4) end-users & stakeholders

Task 51 Scope: 3 "Work Packages" / 13 "Workstreams"

- WP1: Global Coordination in Forecast Model Improvement
- WP2: Benchmarking, Predictability and Model Uncertainty
- WP3: Optimal Use of Forecasting Solutions

Task homepage: <u>https://iea-wind.org/task51</u>

Overview

- Background: IEA Wind Recommended Practice (RP) for the Implementation of Renewable Energy Forecasting Solutions
 - 0 What it is
 - ^o Where to get it
- Use Case Examples based on Recommendations
 - Wind speed evaluation at a Danish Coastal Site
 - Wind power evaluation at a substation in Ireland
 - Meteorological sensor performance assessment at a site in the German Bight

IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions: Set of 4 Parts

Video Introduction

Introduction: https://www.youtube.com/watch?v=XVO37hLE03M

IEA Wind Recommended Practice Book

Note

Elsevier Book

https://www.elsevier.com/books/iea-wind-reco mmended-practice-for-the-implementation-ofrenewable-energy-forecasting-solutions/mohrl en/978-0-443-18681-3

Online OpenAccess:

https://www.sciencedirect.com/book/9780443186 813/iea-wind-recommended-practice-for-the-impl ementation-of-renewable-energy-forecasting-sol utions

IEA Wind Task 51 Information <u>iea-wind.org</u> \rightarrow <u>Task 51</u> \rightarrow <u>Publications</u> \rightarrow <u>Recommended Practice</u>

IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting Solutions

Corinna Möhrlen John W. Zack Gregor Giebel iea wind

IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecast Solutions

Application Areas for the Recommendations

1. System Operation, Balancing and Trading

- Situational awareness in critical weather events
- High-Speed Shutdown events
- Grid related down-regulation or curtailments
- Short-term forecasting with updates from measurements
- Intra-day power plant balancing

2. Wind Turbine, Wind Farm and Solar Plant Operation and Monitoring

- Wind turbine and Power Plant Control
- Condition Monitoring

Companion Evaluation Software: "WE-validate-prob" Assessment of forecasts with an R-package code

Recommendation: Establish an Evaluation Framework Key Components

(1) Choose a time period likely to (1) the forecast produce a representative sample application Specify the **Define the** of relevant weather patterns (2) the key forecast time forecast evaluation (2) Choose a sufficient and wellframes framework sample defined evaluation time frame (3) a ranking of the (e.g. 3 months, 1 year, ...) importance of forecast performance attributes (1) visual inspection (2) use of more specific metrics: SDE, SDBIAS, StDev, VAR, CORR (1) Strategy to deal with **Define set of** (3) use of histogram or box plot missing or erroneous data Quality for evaluation of outliers & forecasts error control & (4) use of contingency tables for (2) Specify evaluation evaluation delivery specific event analysis criteria on delivery approaches performance (5) use of improvement scores performance relative to a relevant reference

forecast

Example 1: Evaluation of Wind Speed at a Danish Coastal Site

Aim: Verify the high resolution versus the low-resolution setup of an ensemble prediction system and evaluate improvement versus cost Specify the Define the forecast evaluation framework sample Define set of Ouality error control & evaluation deliverv approaches performance R CRPS Package WE-validate-prob

Definition of the Sample: Danish synoptic meteorological site: South-west Funen "Assens"

- High-Resolution (HR): 5km grid cells with 60 vertical levels
- Low resolution (LR): 15km grid cells with 32 vertical levels

Evaluation Approach:

- CRPS lead-time dependency
- Reliability Diagram

Evaluation of Wind Speed at a Danish coastal site

Assessment of a high-resolution versus low resolution ensemble system

Forecast	CRPS	Improvement to Reference [%]		
Туре				
Reference	1.6635			
Lead-time	6-11h			
HR	1.140	-31.5		
LR	1.159	-30.3		
Lead-time	0-48h			
HR	1.1236	-32.5		
LR	1.0925	-34.3		

Result from Test 1:

High-resolution setup has only value in the first 12 hours

Conclusion: High-resolution setup can be complementary in the intra-day...

Introduction to Probabilistic Forecast Assessment of Ramping Events: Reliability Diagram CORP approach versus Murphy's approach

Reliability is the degree to which the forecasted probabilities are in agreement with the outcome frequencies

Fig. From documentation (doi:10.1073/pnas.2016191118)

Equidistant binning

non-equidistant binning + 90% consistency band

Reliability Diagram with CORP appraoch:

<u>X-axis:</u> forecasted probabilities <u>Y-axis:</u> conditional event probabilities (CEP) \rightarrow the frequency of observed events given the specific forecast probability

Evaluation Criteria Sensitivity: 4 variable to choose: A,B,C,D

- <u>Threshold</u>: A (a minimum of A "positives" needed for an event)
- Forecast horizon: B1-B2 hours
- <u>Change:</u> C [var unit] over a D [time] window.

Evaluation of Wind Speed at a Danish coastal site Assessment of a high-resolution versus low resolution ensemble system

Reliability is the degree to which the forecasted probabilities are in agreement with the outcome frequencies

HR-setup

iea wind

Result: tendency to lie on top of the diagonal for LR; Hr only in lower bins \rightarrow indicates a negative BIAS and or a slight mis-calibration **Conclusion:** HR setup has a better balance between resolution and calibration, staying mostly within the blue 90% consistency band.

Explanation of Score: Reliability Diagram <u>X-axis:</u> forecasted probabilities Y-axis: conditional event probabilities (CEP) \rightarrow the frequency of observed events given the specific forecast probability

Evaluation Criteria:

- Threshold: 5 (a minimum of 5 "positives" needed for an event)
- Forecast horizon: 6-11 hours
- Change in wind speed: ٠ 3m/s over a 3 hour window.

R

Example 2: Wind Power Evaluation at a Substation in the North-west of Ireland

Package

WE-validate-prob

Definition of the Sample:

Sub station in North-west of Ireland: A number of wind farms are feeding into the substation (wind farm cluster). Forecast type:

Ramp forecasts

- High-Resolution (HR): 5km grid cells with 60 vertical levels
- Low resolution (LR): 15km grid cells with 32 vertical levels

Evaluation Approach:

- CRPS
- **Brier Score**

Wind Power Evaluation at a Substation in the North-west of Ireland Probabilistic Forecast Assessment of Ramping Events: CRPS & Brier Scores

CRPS score

overall performance of prob. forecast

Forecast	CRPS	CRPS	~
	[MW]	[% inst	. cap]
HR	10.5	5.8	
LR	10.9	6.0	No
Reference	20.6	11.5	significance

BRIER score

overall accuracy of a probabilistic event forecast

		10111 11	
1hour	3 hours	3 hours	3 hours
0.0501	0.089	0.0513	0.021
0.0459	0.084	0.0464	0.018
0.0043	0.0053	0.0049	0.0028
	1hour 0.0501 0.0459 0.0043	1hour 3 hours 0.0501 0.089 0.0459 0.084 0.0043 0.0053	1hour3 hours3 hours0.05010.0890.05130.04590.0840.04640.00430.00530.0049

Large sensitivity to event choice!

Explanation of the score:

- CRPS is the probabilistic <u>analogue to the Mean</u> <u>absolute error (MAE)</u> for a deterministic forecast.
- Lower CRPS values indicate smaller error and therefore better performance.
- CRPS scores for each forecast over the 3-month test period

Explanation of the score:

- BS is the probabilistic <u>analogue to mean squared error</u> (<u>MSE/RMSE</u>) of deterministic forecast
- BS measures the mean squared difference (MSE/RMSE) between the forecasted probability (e.g., 0 to 1) and the actual outcome (e.g., 0 or 1).
- The BS values range between 0 and 1 with lower values indicating better performance.

Wind Power Evaluation at a Substation in the North-west of Ireland Probabilistic Forecast Assessment of Ramping Events: Brier Score Decomposition

٠

Decomposition of BRIER Scores

Fore-	MS	CAL	DSC	UNC
cast			(RES)	
Limit:	30MW/3h			
HR	0.0892	0.0105	0.0274	0.106
LR	0.0839	0.0062	0.0283	0.106
Limit:	40MW/3h	\frown		
HR	0.0513	0.0074	0.0153	0.0592
LR	0.0464	0.0029	0.0157	0.0592
Limit:	60MW/3h	\smile	\frown	
HR	0.0210	0.0018	0.0024	0.0217
LR	0.0182	0.0010	0.0045	0.0217
Limit:	20MW/1h		\smile	
HR	0.0501	0.00494	0.00457	0.0498
LR	0.0459	0.00248	0.00639	0.0498

Explanation of the Scores:

- Mean Score (MS) measure the overall predictive event performance
- **Calibration/reliability (CAL)**: measures the agreement of forecasted probability with frequency of event occurrence given the forecasted probability (conditional event probability)
- **Discrimination/resolution (DSC/RES)**: measures the ability of forecasts to correctly distinguish differences in probabilities among the cases.
- → <u>higher values</u> contribute to lower BS, i.e. indicate <u>better performance</u>.
 Uncertainty (UNC): measures inherent uncertainty in the event and is
- related to the event frequency in the sample.

 \rightarrow lower values contribute to lower BS, max. UNC for 50% events in sample

Result: The difference between HR and LR insignificant overall (MS), but quite significant for some components and sensitive to the thresholds and classifiers: the calibration (CAL) in the 40MW/3h class and the discrimination (DSC) in the 60MW/3h class is significantly better for the LR setup...

Conclusion: Decomposition of the Brier score is important, as it reveals differences in the forecast's skill related to distinguish events and to match occurrence with probabilities.

Wind Power Evaluation at a Substation in the North-west of Ireland Probabilistic Forecast Assessment of Ramping Events: **Reliability Diagram**

Evaluation Criteria: <u>Threshold</u>: 5 - <u>Forecast horizon</u>: 6-11 hours - <u>Change:</u> 30MW over a 3 hour window.

Explanation of Plots: X-axis: forecasted probabilities Y-axis: conditional event probabilities (CEP) \rightarrow frequency of observed events given the specific forecast probability Band: 90% consistency band

Result: tendency to lie on top the diagonal for HR; LR tendency to lie below diagonal

→ indicates a negative BIAS for LR and positive BIAS for HR ... and/or a slight mis-calibration

Conclusion: LR setup seems to be in better balance between resolution and calibration, staying mostly within the blue 90% consistency band – consistent with Brier score decomposition results....

Wind Power Evaluation at a substation in the north-west of Ireland Probabilistic Forecast Assessment of forecasted Ramping Events: Reliability Diagram

Demonstration of threshold selection sensitivity

Evaluation of Wind Power at a substation in north-west of Ireland Probabilistic Forecast Assessment of Ramping Events: **Continency table**

Contingency table + HitRate (HR) and False Alarm rate (FAR)

Fore-	Hits	Misses	False	Correct	HR	FAR
cast			Alarms	Neg.		
Limit:	30MW	window:	3h			
HR	149	145	153	1990	0.507	0.071
LR	204	90	393	1750	0.694	0.183
Limit:	40MW	window:	3h			
HR	82	72	91	2192	0.532	0.04
LR	112	42	262	2021	0.727	0.115
Limit:	60MW	window:	3h			
HR	10	44	31	2352	0.185	0.013
LR	30	24	102	2281	0.556	0.043
Limit:	20MW	window:	1h			
HR	37	91	101	2208	0.289	0.044
LR	74	54	302	2007	0.578	0.131

<u>Result:</u>

LR forecasts have much higher number of "hits" LR forecasts have much more "false alarms" most extreme example of this pattern is for the 60MW/3hr threshold Explanation of the Score: The Contingency table lists: absolute number of "hits", "misses", "false alarms" and "correct negatives" in the forecast sample lists the "hit rate" (HiR) → the hits per total number of forecasts "false alarm rate" (FAR) → the false alarms per total number of forecasts.

→ requires to look into costs for misses versus false alarms...

Conclusion:

Beware of the threshold selection sensitivity in selection process and when analysing and evaluating the results Fair evaluation comparison requires to provide the thresholds in advance

Wind Power Evaluation at a substation in the north-west of Ireland Probabilistic Forecast Assessment of forecasted Ramping Events: ROC Curve

Receiver Operating Characteristics (ROC) curve measures the ability to discriminate between events and nonevents and depicts the performance of forecasts at different probability thresholds

iea wind

"Area Under the Curve" (AUC) for different ramping limits and time windows

Result:

0.8

9.0

0.4

0.2

Both forecast setups perform OK with a AUC > 0.7.

- Slightly better, but little
- (insignificant) difference in
- the AUC scores for the LR
- forecasts

Explanation of the Score:

- The ROC curve ascends vertically at FAR=0.0 and horizontally at a sensitivity (hit rate) value of 1.0
- The color scale indicates classification thresholds yielding the points on the curve
- AUC= 1.0 for every forecast is a hit and no false ٠ alarms, 0.5 for random classifiers, i.e. forecasts with no skill (diagonal in graph)

Conclusion: the ROC curve confirms the results from the Brier Scores and indicates that the difference is not due to a mis-calibration.

Wind Power Evaluation at a substation in the north-west of Ireland Probabilistic Forecast Assessment of forecasted Ramping Events: ROC Curve

Evaluation of Wind Power at a Substation in North-west of Ireland

ieq wind Probabilistic Forecast Assessment of Ramping Events: **Composite Performance Metric**

Score	HR	LR	IF	HR Final	LR Final
			weight	Score	Score
CRPS	1	0	3	3	0
CRPS leadtime	1	0	4	4	0
BrierScores	0	1	2	0	2
Hit Rate	0	1	1	0	1
False Alarm rate	1	0	2	2	0
Mean Score	0	1	1	0	1
CAL	0	1	1	0	1
DSC	0	1	1	0	1
UNC	-	-	1	-	-
AUC	0	1	1	0	1
SUM	3	6		9	7
	X				8

Assessment of the Forecast Error Scores:

- For the raw (unweighted) scoring, the high-resolution (HR) setup has a lower composite score (is "worse") than the low resolution (LR) setup
- If weights are applied according to specific targets of an application, the resulting assessment of the error metrics may change!
 In our example, we consider shorter lead-times (<12h) important and false alarms have high costs, which results in

the HR being a better choice.

See also recommendations in <u>chapter 15</u> of IEA Wind Recommended Practice book

Example 3: Wind measurement Evaluation at an Offshore site in the North Sea

Quality control of meteorological measurements in the real-time environment: Recommended Principles for Wind Power Performace Control

Performance control of wind farms and wind turbines is best conducted in the following 3–4 steps:

a) Measuring basic meteorological parameters that can be used to compute power generation output

- wind speed and direction
- air temperature
- barometric pressure
- relative humidity

b) Conversion of the meteorological parameters into a power output

The best and recommended way is the IEC 61400-12-1 standard on power performance measurements, which is based on a physical formula (Equ. 2, chapter 8 [142])

c) Comparison of power output with measured and forecasted input variables

d) Visual Inspection with Ensemble generated Percentiles

Example Alpha Ventus +Fino1: Quality control of meteorological measurements in the real-time environment: Recommended test for met data performance control

IWES

Explanation of BITMASK Available/missing Variables:				
0 or -	bad/missing			
1	windspeed (ws)			
2	temperature (T)			
3	ws+temperature			
4	wind direction (wd)			
5	ws+wdir			
6	wd + T			
8	pressure (ps)			
9	ws+ps			
10	T+ps			
11	ws+T+ps			
12	wd+ps			
13	ws+wd+ps			
14	T+wd+ps			
15	all variables delivered			
1=ok, 0=ba	ad, "-"=missing			

		STATISTICS							
ID Period	Data provision PART 1 (ws,T2m,wdi r,ps)	WindSPEED (bias, rmse,corr Realistic values)	Temperature (bias, rmse,corr Realistic values)	WindDIR (bias, rmse,corr Realistic values)	Pressure (bias, rmse,corr Realistic values)	Installed Capacity [MW]	Improve- ment over Forecast >5%	Delivery Rate [%]	BIT MASK
				Good DAT	4				
2021q3 WAVUWT001	1111	1111	1111	1111	1111	60.0	2.19	99.8	15
Bad DATA MiSSING DATA + Delivery < 98.5%									
2021q2 WAVM8T001 WAVM7T001 capacity	1001 1001	1111 1111	0001 0001	0001 0001	1111 1111	5.0 5.0	6.57 6.14	10.6 11.4	9 9
Bad Data Missing data + Requirement 2: Improvement < 5%									
2021q1 WAVM7T001 capacity	0101	0111	1111	1001	1111	5.0 5.0	0	47.7	10
	1=yes, 0=no								

Explanation of columns WS WDIR TEMP PS					
L	1	BIAS			
3	2	RMSE			
	3	CORR			
U	4	data delivery of realistic values			
1=ok, 0=bad, "-"=missing					

Example Alpha Ventus + Fino1: Quality control of meteorological measurements in the real-time environment

Criteria for "goodness" of data

Variable	unit	lower Limit	upper Limit
Wind speed (WS)	m/s	0	40
Wind direction (WD)	deg	0	360
Temperature (T)	°C	-40	40
Surface pressure (PS)	hPa	800	1100

We reverse verification: measurement versus forecasts!

Variable list and their threshold error limits

	Var Number	Variable Name	Mininum Correlation	Maximum Bias	Maximum MAE
or	1	WindSpeed	0.65	3.0	3.0
	2	AirTemp	0.75	2.0	2.5
	3	WindDirection	0.55	13.0	20.0
	4	AirPressure	0.9	50.0	85.0

Exemplary results from the Quality analysis of 6 Turbines & UW

Statis -tic rank	Windfarm ID	Test: ws temp wd ps	wind speed WS	temp- erature T	wind direction WD	surface pressure PS	Description
1	AV07	1111	111	111	111	111	all tests ok
2	AV08	1111	111	111	111	111	all tests ok
3	UW	1110	111	111	111	000	PS fails all tests
4	AV09	1101	111	111	100	111	WD fails, except for WD(BIAS) OK
5	AV10	1101	111	111	101	111	WD fails, except for WD(MAE) OK
6	AV11	1010	111	000	111	110	T fails on all
7	AV12	1001	111	000	101	111	T fails and WD(MAE) fails

Fino data: Wind, Temperature and Pressure Turbines/UW: Wind & Power

Forecast Evaluation is subjective... remember the 4 corner stones for meaningful evaluation

THANK YOU FOR YOUR ATTENTION

Follow us:

Project webpage: http://iea-wind.org/task51

Publications: https://iea-wind.org/task51/task51-publications

RP-page: https://iea-wind.org/task51/task51-publications/task51-recommended-practices/

Contact us...

Presenter:

Dr. John W. Zack WP2 Leader MESO, Inc, USA jzack@meso.com

Co-authors:

Dr. Corinna Möhrlen WP3 Leader WEPROG, DE & DK

Dr. Mathias Blicher B. DTU Compute Denmark matbb@dtu.dk

DTU

=

Dr. Gregor Giebel Operating Agent DTU Wind, Denmark grgi@dtu.dk

