Task 46 Erosion of Wind Turbine Blades Work Package #3: Wind turbine operation with erosion

# **Operation with Erosion, Aerodynamic Benchmarking Updates** and Next Steps

David Maniaci (Sandia National Laboratories)

dcmania@sandia.gov

Public Webinar - 4 December 2023

andia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003225.

SAND2023-14448PF

Sandia National Laboratories



Technology Collaboration Programme

# WP 3 : Wind turbine operation with erosion

This work package has three key overarching objectives:

- 1. Promote collaborative research to mitigate erosion by means of wind turbine control, assessing the viability of erosion safe mode.
- 2. Improve the understanding of droplet impingement in the context of erosion.
- 3. Improve the understanding of wind turbine performance in the context of erosion, specifically the effect of LEE surface roughness on aerodynamics.

| Please reach out | if |
|------------------|----|
| interested in    |    |
| collaborating!   |    |

David C. Maniaci dcmania@sandia.gov Sandia National Laboratories (U.S.)

| Activity                                                                        | WP code |
|---------------------------------------------------------------------------------|---------|
| Model to predict annual energy production loss on blade erosion class           | WP3.1   |
| Report on standardization of damage reports based on erosion observations       | WP3.2   |
| Droplet impingement model for use in fatigue analysis                           | WP3.3   |
| Potential for erosion safe-mode operation                                       | WP3.4   |
| Accuracy of LEE performance loss model based on field observations (validation) | WP3.5   |

2



# WP 3: Wind Turbine Operation with Erosion

### WP3.1: Model to predict annual energy production loss on blade erosion class

• Common model of performance loss due to leading edge roughness and erosion standardized classes.

## WP3.2: Report on standardization of damage reports based on erosion observations

• Erosion classification report released February 2023 (https://iea-wind.org/task46/t46-results/)

## WP3.3: Droplet impingement model for use in fatigue analysis

• Develop a standard model for droplet impingement, validated with wind tunnel experimental data.

### WP3.4: Potential for erosion safe-mode operation

• Report describing potential for leading edge erosion safe mode operation.

## WP3.5: Accuracy of LEE performance loss model based on field observations (validation)

• Iterative aerodynamic loss benchmarks. Validation of complete performance loss model using probabilistic analysis of field observations.

| Project end: 14 March 2025                 |      |         |     |   |   |   |   |      |      |     |      |      |      |     |      |    |    |    |    |    |    |      |      |      |     |      |      | 1    |    |    |      |      |      |      |     |      |    |    |      |    |    |    |    |      |    |   |
|--------------------------------------------|------|---------|-----|---|---|---|---|------|------|-----|------|------|------|-----|------|----|----|----|----|----|----|------|------|------|-----|------|------|------|----|----|------|------|------|------|-----|------|----|----|------|----|----|----|----|------|----|---|
| Year/År                                    | 2021 | 2022    |     |   |   |   |   |      |      |     |      |      |      |     | 2023 |    |    |    |    |    |    |      |      |      |     |      | 2024 |      |    |    |      |      |      |      |     |      |    |    | 2025 |    |    |    |    |      |    |   |
| Work packages                              |      | <br>3 4 | 1 5 | 6 | 7 | 8 | 9 | 10 1 | 11 1 | 2   | 1 :  | 2 3  | 3 4  | L 5 | 6    | 7  | 8  | 9  | 10 | 11 | 12 | 1    | 2    | 3    | 4   | 5 (  | 67   | 8    | 9  | 10 | 11 1 | 12   | 1    | 2    | 3 4 | 1 5  | 6  | 7  | 8    | 9  | 10 | 11 | 12 | 1    | 2  | 3 |
| Running month during project               |      | 1 2     | 2 3 | 4 | 5 | 6 | 7 | 8    | 9 1  | 0 1 | 1 1: | 2 13 | 3 14 | 15  | 16   | 17 | 18 | 19 | 20 | 21 | 22 | 23   | 24 2 | 25 2 | 6 2 | 7 28 | 8 29 | 30   | 31 | 32 | 33 3 | 34 3 | 35 3 | 36 3 | 7 3 | 3 39 | 40 | 41 | 42   | 43 | 44 | 45 | 46 | 47   | 48 |   |
| WP3 Wind turbine operation with erosion    |      |         |     |   |   |   |   |      |      |     |      |      |      |     |      |    |    |    |    |    |    |      |      |      |     |      |      |      |    |    |      |      |      |      |     |      |    |    |      |    |    |    |    |      |    |   |
| WP3.1 Model to predict annual energy       |      |         |     |   |   |   |   |      |      |     |      |      |      |     |      |    |    |    |    |    |    |      |      |      |     |      |      | D3.1 |    |    |      |      |      |      |     |      |    |    |      |    |    |    |    |      |    |   |
| WP3.2 RP on standardization of damage rep  | ort  |         |     |   |   |   |   |      |      |     |      |      |      |     |      |    |    |    |    |    | D  | 03.2 |      |      |     |      |      |      |    |    |      |      |      |      |     |      |    |    |      |    |    |    |    |      |    |   |
| WP3.3 Droplet impingment model for fatigue |      |         |     |   |   |   |   |      |      |     |      |      |      |     |      |    |    |    |    |    |    |      |      |      |     |      |      |      |    | 1  | 3.3  |      |      |      |     |      |    |    |      |    |    |    | Т  |      | Т  |   |
| WP3.4 Potential for erosion safe mode      |      |         |     |   |   |   |   |      |      |     |      |      |      |     |      |    |    |    |    |    |    |      |      |      |     |      |      |      |    |    |      |      |      | D3   | .4  |      |    |    |      |    |    |    |    |      |    |   |
| WP3.5 LEE performance model validation     |      |         |     |   |   |   |   |      |      |     |      |      |      |     |      |    |    |    |    |    |    |      |      |      |     |      |      |      |    |    |      |      |      |      |     |      |    |    |      |    |    |    | C  | 03.5 |    |   |
|                                            |      |         |     |   |   |   |   |      |      |     |      |      |      |     |      |    |    |    |    |    |    |      |      |      |     |      |      |      |    |    |      |      |      |      |     |      | -  |    |      |    |    |    |    |      |    |   |



## Accomplishments in Work Package 3: Erosion Classification System

## **Visual Condition**

IEA Wind TCP Task 46 Technical Report

Level 4 - "Erosion of topcoat with immediate layer underneath visible and exposed"

Damage threshold: erosion of topcoat ≥10cm<sup>2</sup>; erosion of laminate ≤1cm<sup>2</sup>

- Erosion has worn away to the laminate such that the filler layer or immediate laminate is observable over an area greater than 10cm<sup>2</sup>
- Damage to the substrate is either not entirely obvious or sufficiently small/minor.





Report contains many visual examples of categories of blade and LEP damage. Mass Loss



Mass loss model has the potential to improve its prediction of future erosion level progression through its incorporation of inspection data.

## Aerodynamic Performance Categorization



Power loss is defined in Region 2 of the power curve.

Structural Integrity



Detailed description of severity level definitions and thresholds.



## Accomplishments in Work Package 3: Erosion Classification System

• Deliverable 3.2 was completed with the erosion classification report, published on the website for Task 46

|                                 |           |                                                                              |                                                                                                                        | Severity Level                                                                                                      |                                                                                              |                                           |
|---------------------------------|-----------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|
| Evaluation<br>Criteria          | 0         | 1                                                                            | 2                                                                                                                      | 3                                                                                                                   | 4                                                                                            | 5                                         |
| Visual<br>Condition<br>(LEP)    |           | Lightly worn external<br>coating/LEP<br>Instances of reduced<br>LEP adhesion | Notable areas of<br>localized damage on<br>external coating/LEP<br>Individual Instances<br>of LEP adhesive<br>failure. | LEP is largely<br>compromised over a<br>large area and no<br>longer providing<br>protection to underlying<br>layers | Delamination of topcoat<br>with immediate layer<br>underneath clearly visible<br>and exposed | Notable damage to<br>substrate            |
| Visual<br>Condition<br>(No LEP) | Initial   | Erosion barely visible<br>or pinholes                                        | Localized pitting                                                                                                      | Widespread or coherent<br>pits, some gouges                                                                         |                                                                                              |                                           |
| Mass-loss                       | condition | Coating <10%<br>Laminate 0%                                                  | Coating 10-50%,<br>Laminate 0%                                                                                         | Coating 50-100%,<br>Laminate <10%                                                                                   | Coating 100%<br>Laminate 10-100%                                                             | Coating 100%,<br>Laminate 100%            |
| Aerodynamic<br>Performance      |           | Normal surface<br>roughness<br>Region 2 Power loss<br>0 -1%                  | Region 2 Power loss<br>1%-2%                                                                                           | Region 2 Power loss<br>2%-3%                                                                                        | Region 2 Power loss<br>3-4%                                                                  | Region 2 Power loss<br>>4%                |
| Blade<br>Integrity              |           | Initial erosion of<br>topcoat                                                | Erosion through<br>topcoat                                                                                             | Initial exposure of<br>immediate laminate<br>layers                                                                 | Erosion through<br>immediate laminate layers                                                 | Exposure of structural<br>laminate layers |

## Erosion Classification System Example



| Observation Category   | Erosion<br>Class |
|------------------------|------------------|
| Visual data definition | 3                |
| Mass-loss or Depth     | 3                |
| Aerodynamics/Perf.     | 3                |
| Structural             | 3                |
|                        |                  |



# 🗔 Aerodynamic Benchmark

- Aerodynamic benchmark kicked off in Fall 2022, coordinated by Beatriz Mendez at CENER.
  - Focused on NACA  $63_3\mathchar`-418$  and S814 airfoils
- Results from six participants; includes national labs, academia, and OEMs.
- There is a wide spread in the results for some cases, so comparing model parameters
- Also comparing coordinates of the airfoils for the different wind tunnel tests





# **S814 Airfoil Preliminary Results**

2% suction side & 13% pressure side Re 3.2e6

Roughness 200 um

Experiments: https://a2e.energy.gov/data/lees/report.z01.00





**1st Iteration** 

#### S814 Clean









#### **S814 Clean ITERATION 1 VS ITERATION 2**



10

iea wind

#### S814 Rough ITERATION 1 VS ITERATION 2



11



# **Reference Turbine Models for LEE**

- Plan to develop detailed turbine models for performance loss
  - Requires airfoil polars with range of loss, mapping of blade erosion category to local erosion level (and airfoil loss polar), turbine controllers,
  - Need modified polars for outer ~30% of rotor; 1-2 airfoils with categories 0-4 (or 5) eroded polars
  - Detailed turbine models can be used to improve the simpler models or at least assess their useful range.

Proposed reference turbine models:

- Offshore older: NREL 5MW
  - Lancaster Univ. (Sergio). Model complete and available.
- Onshore older: Wind Pact 1.5 (or 2000's era 1.5MW turbine)
  - Sandia started on this, but got stuck in controller stability issues
- Onshore newer: BAR 3MW
  - Sandia has started on this based on the <u>IEA 3.4-130-RWT</u>
- Offshore newer: 15MW Reference
  - <u>IEA 15-240-RWT</u>
  - (22MW available next year)



# Next Steps in Work Package 3

- Aerodynamic benchmarks, publication of phase 1 results and phase 2 to commence in spring 2024
- 3.1 AEP loss model. Work will progress through the aero. benchmarking group for detailed modeling.
  - Will also pursue simpler model, likely based on DTU or SNL simple performance models
  - $\circ$  Turbine reference models will be developed
- 3.3 Impingement model: via aerodynamic benchmark group
  - WP3: Model the aero. impact of the geom. Change (lwift/drag curves, then used for power and AEP change). WP5: Damage progression modeling of the eroded shape, quantify damage evolution
- 3.4 Erosion Safe Mode: demonstrated by able participants on the reference turbine model(s)
- 3.5 Validation with field data: ongoing work by multiple participants
  - Goal is to align with reference turbine models

| Project end: 14 March 2025                 |      |          |   |   |   |     |   |    |    |    |      |      |      |      |    |    |                 |      |      |     |     |     |      |      |    |    |      |      |     |      |    |    |    |      |     |      |      |    |    |    |      |     |      |   |   |
|--------------------------------------------|------|----------|---|---|---|-----|---|----|----|----|------|------|------|------|----|----|-----------------|------|------|-----|-----|-----|------|------|----|----|------|------|-----|------|----|----|----|------|-----|------|------|----|----|----|------|-----|------|---|---|
| Year/År                                    | 2021 | .021 202 |   |   |   |     |   |    |    |    |      |      |      | 2022 |    |    |                 |      |      |     |     |     |      |      |    |    |      | 2024 |     |      |    |    |    |      |     |      |      |    |    |    | 20   | )25 |      |   |   |
| Work packages                              |      | 3        | 4 | 5 | 6 | 7 8 | 9 | 10 | 11 | 12 | 1    | 2 :  | 3 4  | 5    | 6  | 7  | 8               | 9 ′  | 10 1 | 1 1 | 2   | 1   | 2 3  | 3 4  | 5  | 6  | 7    | 8    | 9 1 | ) 11 | 12 | 1  | 2  | 3    | 4   | 5 (  | ð 7  | 8  | 9  | 10 | 11 1 | 2   | 1    | 2 | 3 |
| Running month during project               |      | 1        | 2 | 3 | 4 | 5 6 | 7 | 8  | 9  | 10 | 11 1 | 2 1: | 3 14 | 15   | 16 | 17 | 18 <sup>·</sup> | 19 2 | 20 2 | 1 2 | 2 2 | 3 2 | 4 25 | 5 26 | 27 | 28 | 29 3 | iO 3 | 1 3 | 2 33 | 34 | 35 | 36 | 37 3 | 8 3 | 9 40 | J 41 | 42 | 43 | 44 | 45 4 | 6 4 | 47 4 | 8 |   |
| WP3 Wind turbine operation with erosion    |      |          |   |   |   |     |   |    |    |    |      |      |      |      |    |    |                 |      |      |     |     |     |      |      |    |    |      |      |     |      |    |    |    |      |     |      |      |    |    |    |      |     |      |   |   |
| WP3.1 Model to predict annual energy       |      |          |   |   |   |     |   |    |    |    |      |      |      |      |    |    |                 |      |      |     |     |     |      |      |    |    | D    | 3.1  |     |      |    |    |    |      |     |      |      |    |    |    |      |     |      |   |   |
| WP3.2 RP on standardization of damage rep  | ort  |          |   |   |   |     |   |    |    |    |      |      |      |      |    |    |                 |      |      |     | D3  | 3.2 |      |      |    |    |      |      |     |      |    |    |    |      |     |      |      |    |    |    |      |     |      |   |   |
| WP3.3 Droplet impingment model for fatigue | )    |          |   |   |   |     |   |    |    |    |      |      |      |      |    |    |                 |      |      |     |     |     |      |      |    |    |      |      |     | D3.: | 3  |    |    |      |     |      |      |    |    |    |      |     |      |   |   |
| WP3.4 Potential for erosion safe mode      |      |          |   |   |   |     |   |    |    |    |      |      |      |      |    |    |                 |      |      |     |     |     |      |      |    |    |      |      |     |      |    |    | C  | 3.4  |     |      |      |    |    |    |      |     |      |   |   |
| WP3.5 LEE performance model validation     |      |          |   |   |   |     |   |    |    |    |      |      |      |      |    |    |                 |      |      |     |     |     |      |      |    |    |      |      |     |      |    |    |    |      |     |      |      |    |    |    |      | D3  | 3.5  |   |   |



# Thank you!!!

Charlotte Bay Hasager (cbha@dtu.dk )



IEA TEM on LEE

The IEA Wind TCP agreement, also known as the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.