June 2023

IEA Wind TCP Task 45

Deliverable 2.2 PUBLIC

Blade End-of-Life Treatments: State of the Art, Challenges, Barriers & Environmental Impacts

IEA Wind Task 45 Wind Turbine Blade Recycling Deliverable 2.2

Blade End-of-Life Treatments: State of the Art, Challenges, Barriers & Environmental Impacts

June 2023

Contributors

Name	Organisation	Expertise / Interest
Paul Leahy	University College Cork (Ireland)	Blade Repurposing, Lifecycle Analysis
Lawrence Bank	Georgia Institute of Technology (USA)	Composite Materials, Sustainability, Repurposing
Peter Deeney	University College Cork (Ireland)	Energy Finance, Circular Economy Business Models
Mijle Meijer	TNO (Netherlands)	Pyrolysis, LCA, fibre recovery and reuse
Justine Beauson	DTU (Denmark)	Reuse of turbine, mechanical recycling
William Travia	DTU (Denmark)	Energy recovery, mechanical recycling
Anne Velenturf / TransFIRe team	University of Leeds (UK)	Prevention; Reuse, Remanufacturing, Cement co-processing
Anne Velenturf / Leeds team	University of Leeds (UK)	Research and development activity
James Lightfoot	National Composites Centre (UK)	Composite materials, Repurposing
Alann André	Research Institute of Sweden (RISE)	Composite materials, Repurposing, Infrastructure, Digitalisation
Cecilia Mattsson	Research Institute of Sweden (RISE)	Solvolysis, material recycling technologies
Albert ten Busschen	Windesheim University of Applied Sciences (Netherlands)	Structural Re-Use of Composites
Jelle Joustra	Delft University of Technology (Netherlands)	Structural reuse and design for reuse
Reza Haghani	Chalmers University (Sweden)	Supply chain and circular economy
Vesna Jaksic	Munster Technological University (Ireland)	Repurposing of the blade (reverse & down engineering)

Background to the Document

This document has been prepared in support of IEA Wind Task 45 Subtask 3.1 on "Integrated life cycle assessment with social and economic factors", Subtask 2.2 on the "Reuse and repurpose of end-of-life wind turbine blades" and Subtask 2.3 on "Recycling and recovery methods". This document provides a review of all potential blade end-of-life options, at various stages of technical development, including their associated environmental impacts and the identified challenges, barriers and opportunities.

The intended audience is wind turbine OEMs, blade manufacturers, asset owners and decommissioning contractors, as well as governments, local authorities and public agencies with responsibility for waste and the circular economy.

Table of contents

Defining the end-of-life of wind turbine blades2
Materials Identification, Subprocesses and Transport2
End-of-life treatment hierarchy2
Wind turbine blades and materials identification3
Pre-treatments and Subprocesses5
Comparing end-of-life treatments8
Metrics used in the literature to characterize end-of-life treatment
Structure of the review of technologies9
Review of end-of-life treatments for wind turbine blades10
Full blades and blade sections10
Continued operation and blade reuse10
Repurposing11
Resizing & segmentation18
Composite pieces21
Pyrolysis21
Solvolysis
Granulates and Powder23
Mechanical recycling24
Other Technologies: Fluidised Bed, High Voltage Pulse Fragmentation and Plasma Gasification27
Cement kiln co-processing28
Incineration
Stockpiling of blades29
Landfill
Discussion – Cross-Cutting Issues
Conclusions and Recommendations

List of Figures

- **Figure 1.** Blade waste hierarchy (adapted from the US Environmental Protection Agency Waste Hierarchy).
- **Figure 2.** Blade end-of-life treatments categorised by blade section size. Green cells indicate the optimal blade section size for each treatment with present-day technology. Amber cells indicate potentially possible but non-optimal sizes for each treatment.
- **Figure 3.** Multiple End-of-life solutions for different sections a single blade (from Nagle et al., 2022a).
- **Figure 4.** Illustration of cascading solutions for composite wind turbine blades (Based on Joustra, 2019).
- Figure 5. CNC waterjet cutting of blade shells (Joustra, 2019)
- Figure 6. Bridge in Szprotawa, Poland (Siwowski et al, 2022)
- **Figure 7**. Bridge in Cork, Ireland (Ruane et al, 2023)
- Figure 8. Test bridge in Draperstown, Northern Ireland (Ruane et al, 2023)
- **Figure 9.** Bridge of blades concept design: (a) by Speksnijder (2018) and (b) by André et al. (2022).
- Figure 10. Brian D. Rasmussen in front of Aalborg Harbor's bicycle shed (Eilers 2020).
- Figure 11. SuperUse Blade Made playground, Terneuzen (Superuse 2016)
- Figure 12. A bench made of blade parts (Blade-made 2022).
- Figure 13. A scale model of a Navarro Sculpture designed to accommodate decommissioned blades (Navarro 2020).
- **Figure 14.** Concept design for 'BladePole', an electric transmission pole using decommissioned wind turbine blade (A. Alshannaq et al. 2019)
- Figure 15. Root section, house foundations (L. Bank et al. 2018)
- **Figure 16.** Roof frames pictured adjoined to housing structures. Foundations from blade can also be observed below the structure (L. Bank et al. 2018).
- Figure 17. Interlocking roof system proposed from blade shell (L. Bank et al. 2018).
- **Figure 18.** Structural reuse of a wind turbine blade: segmentation into construction elements, reuse in diverse applications. (J. Joustra et al., 2021b)
- **Figure 19.** Picnic table prototype, made from construction elements cut from a wind turbine blade, design & photo by Jelle Joustra, 2019
- Figure 20. Small bench, made of blade shell, design & photo by Jelle Joustra, 2019
- Figure 21 Flakes from End-of-life composite with high L/D-ratio
- Figure 22 Bending stiffness of new product based on strips with different L/D-ratio
- Figure 23 Bending strength of new product based on strips with different L/D-ratio
- Figure 24 Retaining wall profiles made of re-used composite being installed
- Figure 25 Beams in guiding structure of re-used composite.
- **Figure 26.** Cost versus technological readiness level of various end-of-life technologies.

Blade End-of-Life Treatments: State of the art, Challenges, Barriers and Environmental Impacts

Paul Leahy¹, Lawrence Bank², Peter Deeney¹, Harald van der Mijle Meijer³, Justine Beauson⁴, William Travia⁴, Anne Velenturf⁵, James Lightfoot⁶, Alann André⁷, Cecilia Mattsson⁷, Albert ten Busschen⁸, Jelle Joustra⁹, Reza Haghani¹⁰, Vesna Jaksic¹¹

¹ University College Cork, Ireland

²Georgia Institute of Technology, The United States

³TNO, The Netherlands

⁴Technical University of Denmark, Department of Wind and Energy Systems, Denmark

⁵ University of Leeds, Great Britain

⁶ National Composites Centre, Great Britain

⁷ Research Institute of Sweden (RISE), Sweden

⁸ Windesheim University of Applied Sciences, The Netherlands

⁹ Delft University of Technology, The Netherlands

¹⁰ Chalmers University of technology, Sweden

¹¹ Munster Technological University, Ireland.

Introduction

It is widespread knowledge that the waste from decommissioned wind turbine blades is a serious waste disposal issue. The composite materials which blades are made from are not currently recycled at scale and with many developed countries prohibiting the landfilling of wind turbine blades, there is no obvious solution to the rapidly increasing mass of composite waste being decommissioned from sites. This waste mass is set to exponentially increase, as more turbines are commissioned throughout the world, this will eventually translate to more blades being decommissioned at end-of-life. The recycling of glass fibre reinforced composites and the challenges related to the end-of-life of wind turbine blades have been studied for many years. The International Energy Agency Wind TCP Task 45 on the recycling of wind turbine blades has identified 47 European projects dedicated to solving the issues related to the end-of-life of wind turbine blades fibre reinforced polymer composites. These research projects started as early as 1997 and continue to be funded today. The document prepared by the IEA Wind Task 45 categorizes the projects into seven topics: Prevention, Reuse, Repurpose, Recycling, Recovery, Circular economy and Decision support.

A recent report by the University of Leeds for the United Kingdom Department for International Trade summarised current research and development activity in the area of end-of-life blade treatments (Velenturf, 2022), "A timed search was carried out for research and innovation projects for glass fibre reinforced composites/offshore wind turbine blades. 32 Projects were identified, of which 26 were wholly or partly focused on recycling solutions, 12 included design aspects primarily on the development of alternative composites, and 10 arguably covered reuse, repurposing and/or remanufacturing (arguable because some constituted remanufacturing post-recycling, which others would define as recycling). A further structured search was carried out in July 2021 for projects on wind and sustainability, within the repositories on Gateway to Research (holding projects funded by UK Research and Innovation) and Cordis (holding projects funded by the European Union). This was part of the yet-unpublished Wind Energy Lifecycle Sustainability project by the University of Leeds, and

returned a total of 237 projects on Cordis and 105 on Gateway to Research offering another source of relevant projects on turbine blades. Of the projects on Gateway to Research, nine projects focused mainly on blades/rotors, with subjects ranging from material selection/development to design of blades and manufacturing facilities and leading edge protection. Cordis held 25 projects focused mainly on blades/rotors with subjects ranging from remote condition monitoring to composites hub design and manufacturing, composite material development, blade design optimisation, durability, manufacturing and inspection, mobile blade shredding and market research for recovered fibres.