

Minute-scale wind forecasting introduction

IEA Workshop: Forecasting for the Weather Driven Energy System April 10-11, 2024
Roskilde, Denmark

Elliot Simon, PhD ellsim@dtu.dk Senior R&D Engineer DTU Wind & Energy Systems Measurement Systems & Methods (MEM)

6 years ago, in this very spot...

IEA WIND TASK 36

June 2018

Final Programme of the

Joint IEA Wind Task 32 and Task 36 Workshop on

Very short-term forecasting of wind power

task 32

lidar

Date: June 12-13, 2018

Venue: Niels Bohr Auditorium, DTU Risø Campus, Roskilde, Denmark
Workshop leaders: Ines Würth (Uni Stuttgart), Laura Valldecabres (Uni Oldenburg),
Elliot Simon (DTU Wind Energy), Mike Courtney (DTU Wind Energy)

What we achieved

- Gathering of 40+ forecast users, providers, and researchers
- Abandoned the term "very-short-term" and adopted "minute-scale"
- Published field review article covering:
 - Minute-scale wind and power variability
 - Applications of minute-scale wind forecasts
 - Status quo and state-of-the-art forecast methods
 - Implementation challenges and recommendations

Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36

by Ines Würth 1,* \square , Laura Valldecabres 2 , Elliot Simon 3 \bigcirc , Corinna Möhrlen 4 \bigcirc , Bahri Uzunoğlu 5,6 , Ciaran Gilbert 7 \bigcirc , Gregor Giebel 3 \bigcirc , David Schlipf 8 \bigcirc and Anton Kaifel 9 \bigcirc

- Stuttgart Wind Energy, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
- ForWind-University of Oldenburg, Institute of Physics, Küpkersweg 70, 26129 Oldenburg, Germany
- ³ DTU Wind Energy (Risø Campus), Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
- WEPROG, Willemoesgade 15B, 5610 Assens, Denmark
- Department of Engineering Sciences, Division of Electricity, Uppsala University, The Ångström Laboratory, Box 534, 751 21 Uppsala, Sweden
- 6 Department of Mathematics, Florida State University, Tallahassee, FL 32310, USA
- 7 Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George St, Glasgow G11XW, UK
- Wind Energy Technology Institute, Flensburg University of Applied Sciences, Kanzleistraße 91–93, 24943 Flensburg, Germany
- ⁹ Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, Meitnerstraße 1, 70563 Stuttgart, Germany
- * Author to whom correspondence should be addressed.

Energies 2019, 12(4), 712; https://doi.org/10.3390/en12040712

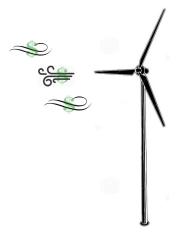
Submission received: 14 December 2018 / Revised: 13 February 2019 / Accepted: 14 February 2019 / Published: 21 February 2019

(This article belongs to the Special Issue Solar and Wind Energy Forecasting)

https://www.mdpi.com/1996-1073/12/4/712

Today

- Many early ideas have developed into working tools and methods
- Cooperation has grown to unite with solar, storage, and hybrid systems
- 70+ attendees at this workshop ©
- New regulations and markets are bringing focus to the field
- EU commission guideline on electricity balancing (2021): "...all TSOs shall apply the imbalance settlement period of 15 minutes in all scheduling areas..."



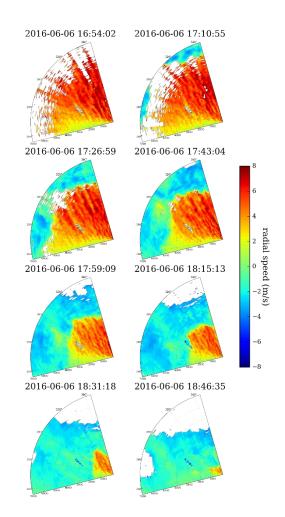
Motivations

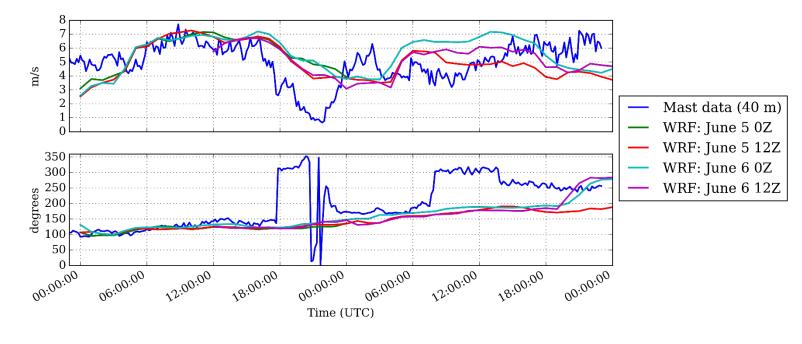
- 1. Operation and decision horizons are shortening due to increase in share of variable renewables
 - Power system imbalances → financial costs and inefficient resource use, potentially grid failures
 - Early movers: Australia (5-min), Nordics, Germany (15-min), UK (30-mins)

- 2. Predictive control of wind turbines can improve production and extend lifetime
 - Feedforward control: yaw/pitch regulation, extreme load and erosion avoidance

Data driven methods

- Physical models (i.e. NWP) are very useful but fall short on resolution and runtime
- Historical data can be used to identify patterns and attempt to predict the future
- The atmosphere is complex and statistical approaches using only past data can lead to large (costly) errors
- Site measurements can provide immense value to improving forecast accuracy
- For wind, this includes e.g.:
 - Wind speed and direction, and variability
 - Boundary layer height, atmospheric stability, turbulence intensity
 - Local and surface effects: terrain, vegetation and flow patterns
- These measurements are expensive and require experts to set up and operate!


Wind lidars – a tool for minute-scale forecasting


- Pulsed scanning Doppler wind lidars can remotely measure the wind up to ~10 km away
- The lidar's scan head can adapt to any site and measurement configuration

Extreme event witnessed by lidar

E. Simon, 2019. Minute-Scale Wind Forecasting Using Lidar Inflow Measurements. https://doi.org/10.11581/dtu:00000054

Other lidar studies and proofs of concept:

- Magerman, 2014: Short-Term Wind Power Forecasts using Doppler Lidar,
 https://keep.lib.asu.edu/system/files/c7/124487/Magerman asu 0010N 14603.pdf
- Valldecabres et. al, 2018: Very short-term forecast of near-coastal flow using scanning lidars, https://doi.org/10.5194/wes-3-313-2018
- Simon, 2019. Minute-Scale Wind Forecasting Using Lidar Inflow Measurements.
 https://doi.org/10.11581/dtu:00000054
- Pichault et. al, 2021: Short-Term Wind Power Forecasting at the Wind Farm Scale Using Long-Range Doppler LiDAR, https://doi.org/10.3390/en14092663
- Theuer, F et. al, 2022.: Observer-based power forecast of individual and aggregated offshore wind turbines, https://doi.org/10.5194/wes-7-2099-2022
- All above approaches have demonstrated superior forecast skill over statistical methods

Summary

- Minute-scale forecasting of renewables is important today for power system and power plant operation
- Advancements are driven by regulation and commercialization
- Site measurements are essential for improving forecast skill
- Remote sensing instruments like lidars are useful tools for providing real-time atmospheric data used to train/tune/operate the models
- We're very glad you're here to contribute to these efforts ©