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The importance of reanalysis for wind energy

* Regional wind climate vital for
identifying areas with the best wind
resources large scale

- Even high-resolution regional 20-200 km
reanalysis may miss features
present on microscale (extreme
i i i mesoscale modellin medium resolution topograph
winds, rain erosion etc). medium scale 8 pography
* Apart from long-term wind resource, 1-20 km —
the temporal aspects are important el AR Lo
for grid integration (e.g. CorRES)
. Resoh,ing microscale features and in small scale microscale modelling high resolution topography
situ validation against 0.1-1 km

measurements are crucial high resolution wind climate
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~Boundary conditions for mesoscale models

The making of the New European Wind Atlas —
Part 1: Model sensitivity
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The Global Wind Atlas
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50-year extreme winds from reanalysis

CFSR: US0 @ 150m

ERA5: U50 @ 150m
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Research paper

o Lead|ng edge erOS|0n on Wl nd tu rbl ne blad es |S a Rain erosion atlas for wind turbine blades based on ERA5 and NORA3 for

Scandinavia

CO m m O n ISS U e y partl CU I arly fO r WI n d tU rb I n eS p I aced Asta Hannesdéttir*, Stephan T. Kral ™*, Joachim Reuder", Charlotte Bay Hasager *"
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in reg lons characterized by h ig h wind Speeds and e e B o 550, By Ny
precipitation. ARTICLE INFO ABSTRACT

Keywords: Leading edge erosion on wind turbine blades is a common issue, particularly for wind turbines placed in regions
Prim i atlos characterized by high wind speeds and precipitation. This study presents the development of a rain erosion atlas
for Scandinavia and Finland, based on ERAS reanalysis and NORA3 mesoscale model data on rainfall intensity

Wi nd Speed S pectra ThYbO rﬂn Ra i n spectra Thybo rgn and wind speed over five years. The IEA 15 MW reference wind turbine is used as an example to evaluate

impingement water impact and erosion onset time for a commercial coating material. The damage progression is

modeled by combining the wind speed and rainfall data with an empirical damage model that relates impinged

-:' d ) M t water (H) as a function of impact velocity to the time of erosion onset. Comparative analyses at two weather
b easurements station locations show that NORA3 data more aligns with in terms of power spectral

1034 b)

—— Measurements
NORA3 density, mean wind speed, rainfall, and erosion prediction than ERA5. NORA3-based atlas layers offer finer
NO RA3 spatial detail and predict shorter erosion onset times over land compared to ERAS, particularly in complex
) terrain. Conversely, the ERA5-based atlas suggests a shorter onset of erosion offshore. Based on NORA3 data,
T E RAS c— ERAS erosion onset time is estimated at 5 years on average for Baltic Sea wind farm sites and 3.2 years for sites in the

AR f—5/3 North Sea.
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1 0 of a turbine in operation, and 2) the droplet impact at the specimen in
the rain erosion tester versus the multitude of droplets impact to the

EE) at wind turbine blades is the damage leading edge of the blades.
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Normalized wind speed WASP

WASP microscale model:
+ >1700 active users

- Uses ERAGS stability data for modelling

https://link.springer.com/article/1
023-00803-3

Boundary-Layer Meteorology (2023) 188:75-101
https://doi.org/10.1007/510546-023-00803-3
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Abstract

Modelling the horizontal and vertical variation of wind speed is crucial for wind energy
applications. A model frequently used for this purpese is part of the Wind Atlas Analysis and
Application program (WAsP). Here, we modify the model in WAsP to account for local atmo-
spheric stability parameters. Atmospheric stability effects are treated by using the impact of

a temperature scale on the geostrophic drag law and the diabatic logarithmic wind profile.

» ©_Uses ERAS for air density model

hitps:/Aww.mdpi.com/1996-1073/42/11/203

energies

Article
Estimating Air Density Using Observations and
Re-Analysis Outputs for Wind Energy Purposes

Rogier Floors ** and Morten Nielsen'
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Abstract: A method to estimate air density as a function of elevation for wind energy resource
assessments is presented. The current practice of using nearby measurements of pressure and
temperature is compared with a method that uses re-analysis data. It is found that using re-analysis
data to estimate air density gives similar or smaller mean absolute errors compared to using
measurements that were on average located 40 km away. A method to interpolate power curves
that are valid for different air densities is presented. The new model is implemented in the
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Future applications

» Important for wind applications to have boundary scaling variables available (z0, U*, H, h)
« Important for wind applications to have wind speed and dir at some heights above surface

« Easy interface to download both in spatial and time slices (downloading a time series is
currently often problematic).

 Portal for all regional reanalysis?
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Rogier Floors <rofl@dtu.dk>
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Extra: Observing wind climates

* Only mean wind speed is not enough! We want the distribution of wind speeds so that we can
calculate power density per square meter of area covered by turbine

N
P =05 1ZU3
= Uop t
Nt=0

 Quite often things are simplified by fitting Weibull distributions

nsec

1 3
> ar(i+l)
nsec kg
s=1

 Finally, a power curve is needed to calculate the actual power production

Pweibunn = 0.5p
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U Extra: WASA3
Mean wind speed [ms~t], 100 m, (1990-2019)

Mean power density [Wm™2], 100 m, (1990-2019)

Mean power density [Wm~2], 100 m, (1990-2019)
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Extra: Validation of downscaling procedure

0.010 1

ERAS
ERAS+WRF _ _
0,008 4 ERA5+WRF+PyWAsP Overall (MAPE in wind speed)
- - ERA5: 24.6 %
2 00061 - ERA5 + WRF: 4.6 %
ab]
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Power density bias [Wm™2]
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CorRES:
What is it?

 Correlations in renewable energy sources (CorRES)

* Tool to simulate wind and solar generation
time series 0

. Developed at DTU W|nd Jul 04 Jul 06 Jul 08 Jul 10
« Based on ERAS and global wind atlas

* Used for power and energy system studies
» Large-scale runs (pan-European and beyond)
« Can run 10000+ plants in one run
« 35+ years on hourly (or higher) resolution

o
D
T

Standardized gen.
e
-

I
(3%

* Used also in plant-level analyses
* E.g., revenue under variable electricity prices

 Correlation between wind (and solar) generation
and electricity price

Spatial correlations in wind generation looking from a
German onshore region
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