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Abstract

For any industry, it is important to establish standards and recommended best practices in order to ensure security of supply with
a healthy competition structure. The IEA Wind Recommended Practice for the Implementation of Renewable Energy Forecasting
Solutions (IEA-RP) have been developed by a team of internationally active experts in wind and solar forecasting to fill this gap in
the selection and implementation of optimal renewable energy forecasting solutions. The IEA-RP comprises four parts. The first
part, Forecast Solution Selection Process, addresses the design of a customised process to select an optimal forecast solution for
users specific situations. The second part, Design and Execution of Benchmarks and Trials, addresses the design, execution and
analysis of customised forecasting benchmarks and trials. The third part, Forecast Solution Evaluation, describes methods and
guidelines for meaningful evaluation of renewable energy forecasts and entire forecast solutions. The fourth part, Meteorological
and Power Data Requirements for real-time Forecasting Applications, is a guideline for the selection, deployment and mainte-
nance of meteorological sensors, power measurements and associated data quality control relevant to real-time forecasting. To
assist in the practical application of the guideline, we provide three hands-on examples on how to use the guideline to design
or improve forecast evaluation (Part 3) and measurement data quality (Part 4) in an efficient and impactful way. In the three use
cases we demonstrate (1) evaluation of meteorological parameter forecasts (that could be used as input to a power prediction
procedure) at a Danish coastal location, (2) verification of wind power predictions for a substation in the Northwest of Ireland

and (3) quality control of meteorological measurements at an offshore location in the North Sea.

1 Introduction

The operational use of wind and solar power production fore-
casts has become widespread in the electric power industry and
their benefits for the management of the variability of wind-
based and solar-based generation have been documented in a
number of studies (e.g., [1], [2]). However, while the opera-
tional use of forecasts has substantially grown over the past
decade, there is considerable evidence that the full potential
value of the wind and solar forecasts is often not realized in
many applications. This is related to several factors. These
include (1) specification of the wrong forecast objectives in the
forecast solution selection process, (2) use of information from
a poorly designed or executed forecast trial or benchmark to
select a forecast solution, (3) use of forecast evaluation met-
rics that are not optimal for a user’s application - that is they
do not represent the way in which a user’s application is sensi-
tive to forecast error and (4) supplying meteorological or power
production data from the generation facilities to the forecast
process that is not of sufficient quality, representativeness or
timeliness.

In order to address this issue, an international group of
experts has worked under the structure of Tasks 36 and 51

of the International Energy Agency’s (IEA) Wind Technol-
ogy Collaboration Program (known as “IEA Wind”) [3] to
develop a set of four recommended practice documents (IEA-
RP) that provides practical guidance on selection of optimal
forecast solutions. The first phase of Task 36 extended from
2016 through 2018 and produced an initial version of the IEA-
RP that consisted of three documents. The second phase of
Task 36 was active from 2019 to 2021 and produced a sec-
ond version of the IEA-RP that included revised versions of
the original three documents and also added a fourth document
that addressed issues with the gathering of data for input into
the forecast process. The second version of the IEA-RP was
also published by Elsevier as a book entitled as "The IEA Wind
Recommended Practice for the Implementation of Renewable
Energy Forecasting Solutions" [4] The IEA-RP is designed to
help streamline business processes for decision makers, system
operators, traders, balance responsible parties and wind farm
operators on a global basis.

The extension and refinement of the IEA-RP now contin-
ues under IEA Wind TCP Task 51. The fist phase of this Task
began in January 2022 and will continue until the end of 2025.
Information about the activities associated with Task 51 can be
found at: https://iea-wind.org/task51/.



It is anticipated that the primary focus of the Task 51 work
will be on the addition of datasets and tools to the IEA-RP doc-
ument package. This will include a selection of use cases to
serve as a resource for the industry in the adaptation and imple-
mentation of the recommendations. In addition as an assist
to industry in the design and execution of forecast evaluation
procedures, Task 51 is also developing an R-based forecast ver-
ification tool that facilitates the implementation of the forecast
verification practices specified in the [IEA-RP documents.

This paper provides practical guidance and real data exam-
ples of how to use the recommendations provided in the IEA-
RP to evaluate alternative forecast solutions and ultimately
select the best forecast solution for a specific application. The
paper is organized in five sections. The section (Section 2) fol-
lowing this introduction provides an overview of the contents
of the IEA-RP and the companion R-based verification tool.
The next section (Section 3) presents an outline of how to effec-
tively apply the IEA-RP guidelines in real world applications.
Section 4 provides three specific use case examples. The paper
concludes with a summary in Section 5.

2 Overview of the IEA-RP

The second version of the IEA-RP is composed of four
parts. The first part, Forecast Solution Selection Process [5],
addresses the design of a customised process to select an
optimal forecast solution for user-specific situations. This is
intended to provide guidance for the design of an economically
viable process that will maximize the probability of obtaining
an optimal forecast solution for a user’s applications. Part 1 is
divided into two core sections. The first is a discussion of the
“big picture” issues that should be considered before starting
the design of a selection procedure. The second is the presen-
tation and discussion of a Decision Support Tool (DST) that
steps through the issues that should be considered during the
design of a forecast solution selection process.

The second part, Design and Execution of Benchmarks and
Trials [6], addresses the design, execution and analysis of
customised forecasting benchmarks and trials (B/T). For the
purposes of the IEA-RP, a benchmark is defined as an exercise
conducted to determine the features and quality of renewable
energy forecast systems or methods such as those used to
produce wind or solar power forecasts. A trial is an exercise
conducted to test the features and quality of operational renew-
able energy forecast solutions. Part 2 provides guidance for
optimizing the three fundamental phases of a B/T: (1) prepa-
ration, (2) execution, and (3) evaluation and decision-making.
Optimizing the design specifications and execution protocols
in each phase dramatically increases the probability that the
B/T will provide meaningful data to support the selection of an
optimal forecast solution for a particular application.

The third part, Forecast Solution Evaluation [7], describes
methods and guidelines for meaningful evaluation of renewable
energy forecasts and entire forecast solutions. The evaluation
process is a large component of the forecast solution selec-
tion process if a benchmark or trial is conducted as part of

the process but an evaluation is also an important compo-
nent of an ongoing performance assessment program. Part 3
provides guidance for the effective evaluation of the perfor-
mance of alternative forecast solutions. The guidance is based
on four fundamental principles: (1) evaluation is subjective, i.e.
it is important to understand the limitations of chosen metrics,
(2) evaluation has an inherent uncertainty due to its depen-
dence on the evaluation dataset and the specific metrics that
are employed, (3) evaluation should contain a set of metrics in
order to measure a range of forecast performance attributes and
(4) evaluation should reflect a “cost function”, i.e. the selected
metric combinations should provide an estimate of the value of
the solution for the specific target applications(s).

The fourth part, Meteorological and Power Data Require-
ments for real-time Forecasting Applications [8], is a guideline
for the selection, deployment and maintenance of meteorolog-
ical sensors, power measurements and associated data qual-
ity control relevant to real-time forecasting. The focus is on
the impact that measurement-data-related decisions that affect
the characteristics (e.g. availability, quality, representativeness,
timeliness, etc.) of the data available from a wind or solar gen-
eration facility ultimately have on wind or solar generation
forecast performance.
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Fig. 1 Concept of the Companion Forecast Evaluation Tool
(WE-verify-prob) to the Recommended Practice part 3 [9]

In order to provide practical support for the guidance pro-
vided in these four documents, a companion forecast verifi-
cation tool called WE-verify-prob[10] is being developed to
facilitate the design and execution of holistic evaluations of
forecast performance. WE-verify-prob[10] is an R-based code
base to verify probabilistic wind energy forecasts. It provides
example code for many of the probabilistic forecast evaluation
metrics described in the [EA-RP Part 2 Designing and Execut-
ing Forecasting Benchmarks and Trials [11] and Part 3 Forecast
Solution Evaluation [9]. The tool is accessible for download
at the IEA Wind Task 51 web page* or as an R-package. The
development of the tool is expected to continue under Task 51.
The use of the term "holistic" refers to the assessment of a wide
range of forecast performance attributes, which is in contrast to
the dominant forecast user practice of assessing only the "typ-
ical forecast error" attribute as evaluated by popular metrics
such as the "mean absolute error" or the "root mean square
error". The conceptual design of the tool is illustrated in Fig. 1.

*https://iea-wind.org/task51/



The tool accepts two types of input: (1) time series of observed
and forecasted data and (2) a set of configuration parameters.
Once the user has supplied the required inputs, the tool gen-
erates reports containing a set of forecast verification statistics
and explanatory plots.

3 Practical Use of the IEA-RP
Recommendations

This section provides an outline of the how to use the recom-
mendations in the IEA-RP in real world applications. Although
many of the principles and guidelines specified the IEA-RP are
likely to be useful in a broad range of forecasting applications,
they are specifically intended for the following application
areas (see [12]):

1) System Operation, Balancing and Trading:

« Situational awareness in critical weather events

+ High-Speed Shutdown events

+ Grid related down-regulation or curtailments

+ Short-term forecasting with updates from measure-
ments

+ Intra-day power plant balancing

ii) Wind Turbine, Wind Farm and Solar Plant Operation and
Monitoring:

* Wind turbine and Power Plant Control
+ Condition Monitoring

3.1 Selection of Instrumentation

The recommendations for the selection of instrumentation to
provide data for input into the forecast process is based on the
consideration of accuracy and reliability requirements. Accu-
racy requirements need to be defined for the application/project
and aligned with the associated levels of effort necessary to
operate and maintain the measurement system under these
constraints. An overall cost-performance determination should
therefore always be carried out to adapt the budget to the accu-
racy requirements and vice versa. Reliability can be achieved
with redundant instrumentation and/or high quality instrumen-
tation. Redundancy enhances and ensures confidence in data
quality. Selection of multiple instruments need to be aligned
with the accuracy needs.

3.2 Gathering a Meaningful Forecast Evaluation Sample

A key component of a forecast evaluation is the gathering of
a meaningful forecast evaluation sample. "Meaningful" in this
context is defined as a sample of cases that is representative of
the range of forecast scenarios that are likely to be encountered
during a typical year at the target sites. Such a sample can be
ideally constructed by obtaining forecasts and the correspond-
ing observational data for one or more years. In most cases
this is not feasible and it is necessary to explicitly construct a
sample that includes a sufficient representation of key forecast
scenarios which should include seasonal variations (e.g. high

resource (wind, solar) season, low resource season and typi-
cal types of extreme (i.e. the tails of the resource distribution)
or difficult to forecast events. If a sample is to be gathered in
real-time then the exercise should be run in several periods at
different times of the year. If the sample is gathered from his-
torical data, then the key types of scenarios should be identified
and the sample should be constructed to include representative
cases of each key type of forecast situations.

3.3 Specification of Appropriate Forecast Evaluation Metrics

Once a meaningful forecast sample has been gathered, the next
step is to construct an appropriate set of forecast performance
metrics for the target application. As discussed in the IEA-RP
(see section 15.1.5. of [9]) it is desirable to use a set of metrics
to measures a range of aspects of forecast performance rather
than a single metric or a small set of metrics that measure one
attribute such as the "typical error". The set of metrics should
represent or approximate the sensitivity of the target applica-
tion to forecast error. Ideally, this should take the form of a
"cost function" that quantitatively links the cost of a forecast
error to the errors in the key forecast variables. However, in
many cases a true "cost function" is not available for a partic-
ular application. A reasonable alternative is then to use a set
of metrics that approximate a user’s understanding of how the
application is sensitive to forecast error. For example, are errors
more critical in certain scenarios or times of the day or year,
different forecast lead-times or threshold limits? Or are errors
that have a magnitude below a specific threshold not impor-
tant? (i.e. are errors only significant to the application, if they
are outside of a specified range of noise)?

Another aspect to consider is “reducibility” and “stabil-
ity” of results. For example the verification of probabilistic
forecasts with the reliability diagram has previously caused
concern in the community, because the choice of bins in the
classical approach with equidistant bins is prone to gener-
ate drastically distinct reliability diagrams that easily can give
a wrong impression of the goodness of a forecasting sys-
tem - to both sites. In [13] it was reported that “..alternative
methods for the choice of the binning have been proposed
in the literature, extant approaches exhibit similar instabili-
ties, lack theoretical justification, are elaborate, and have not
been adopted by practitioners”. Another way of verifying the
reliability of a probabilistic forecast is to use a continuous bin-
ning approach, the so-called “Consistent, Optimally binned,
and Reproducible reliability diagrams using the Pool-adjacent-
violators algorithm” (CORP) approach (see [13]).

The CORP approach is reported to resolve these issues in
a theoretically optimal and readily implementable way for
practical verification tasks for reliability diagrams and score
decompositions and hence has been implemented into our
example verification code “WE-verify-prob” [10].



3.4 Production and Interpretation of Forecast Evaluation
Metric Data

While it is conceptually straightforward, the production and
interpretation of forecast evaluation metric data can pose some
significant issues to inexperienced evaluators and can also be a
significant source of noise in the final set of performance met-
ric data. Evaluators with an experience with many benchmarks
and trials are often amazed at the difference in forecast metric
data that arises when the same set of forecast metrics are com-
puted with the same set of input data by different evaluators or
software modules. There are many overlooked factors that con-
tribute to these differences including how missing forecast or
observed values are treated, how the data is quality controlled
(i.e. which input data are classified as unacceptable) and the
computational procedure (formulas, order of operations etc.)
used to compute the metrics. These issues typically become
more significant in the evaluation of probabilistic forecasts
since the forecasts themselves are more complex and therefore
the formulation of the metrics is more complex. This makes
them more challenging to compute - especially in a spread-
sheet environment - and also to interpret. In order to address
this issue the WE-verify-prob[10] software is being developed
(see also section 2).

4 Example Use-Cases for the Recommended
Practice Guideline

4.1 Wind speed Comparison at a Danish SYNOP station of a
test-setup with a running setup

The first use case example is a comparison of two alternate
forecasts of wind speed for a wind measurement site. The loca-
tion is a synoptic meteorological observing station (SYNOP)
that reports 10-m wind speed and direction at a complex coastal
location near Assens, Denmark (55°14°50.3"N 9°53°24.8"E |
55.2473N, 9.89023E). For this comparison two 10-m wind
speed forecasts from a 75-member forecast model ensemble
based on WEPROG’s Multi-Scheme Ensemble Prediction Sys-
tem (MSEPS) were used: (1) a high resolution (5 km grid cells
with 60 vertical levels) forecast modeling system labeled "HR"
and (2) a lower resolution (15 km grid cells with 32 vertical
levels) operational modeling system labeled "LR".

The WE-verify-prob software [10] (see also 3.4) was used
to assess the performance of these two sets of forecasts. We
start our comparison evaluation with the CRPS score [14] for
a 6-11 hour forecast and a 0-48 hour forecast, shown in Table 1.

Additionally, we decompose the score in lead-time depen-
dent score values for each hour of the forecast horizon to
evaluate the error growth of the two forecast systems, shown
in Fig 2.

The CRPS score is the equivalent of the mean absolute
error (MAE) score for probabilistic forecast and can also be
interpreted as the integral of the Brier score over all possible
threshold values for the parameter under consideration. As with

Table 1 CRPS for a 48 hour ahead forecast for the high-resolution

(HR), low-resolution (LR) ensemble, the reference and the
improvement relative to the reference.

Forecast CRPS Improvement to
Type Reference [%]
Reference  1.6635

Lead-time 6-11h

HR 1.140 -31.5

LR 1.159 -30.3
Lead-time 0-48h

HR 1.1236 -32.5

LR 1.0925 -34.3

the MAE, the lower values of the CRPS indicate better perfor-
mance. For statistically generated probabilistic forecasts (e.g.
with quantile regression), the cumulative distribution function
(CDF) is known and can be used to compute the CRPS. For
numerical ensemble weather prediction models with differ-
ent model physics and/or initial conditions, it is necessary to
convert the data into an estimated (cumulative ) distribution
function that can be evaluated at any point z € R [15]. As Zamo
and Naveau [16] pointed out, the CRPS is estimated with some
error, when the true forecast CDF is not fully known, but rep-
resented as an ensemble of values and that “..using the CRPS
to compare parametric probabilistic forecasts with ensemble
forecasts may be misleading due to the unknown error of the
estimated CDF for the ensemble”. In our case, we compare two
forecasts generated with the same ensemble prediction system
in different setups and hence we can ignore this potential error
source.

CRPS [m/s]

—HR
—IR
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Fig. 2 CRPS by lead time for the high-resoluion (HR) and the
low-resolution (LR) setup, showing the error growth over 48
hours.

The high-resolution forecast HR scores better than the oper-
ational low-resolution LR forecast for the coastal site in the
first 12 forecast hours. This is an expected result, especially
for a coastal site, where the higher resolution is resolving the
coastline much better than a coarser resolution model setup.
Both forecasts are approximately 30% better performance in
comparison to the reference forecast and the high-resolution



forecasts improves 1.5% over the low-resolution operational
forecast. However, when looking at lead-times above 12 hours,
the LR forecast has a lower error growth in comparison to the
HR forecast, which can be seen in Figure 2 and the CRPS for
the 0-48 hour lead-time in the second part of Table 1. The non-
uniform lines are due to the changing forecast initial times.
Nevertheless, our example demonstrates well, that it is impor-
tant to test and verify forecasts on the exact target in order to
generate a fair verification, but also to take the right decision
from the result. The slightly higher error growth for the high
resolution system over the longer forecast lengths are due the
larger amount of degrees of freedom in the higher resolution
and the fact that the LR forecast is tuned for good average
scores in the day-ahead forecast horizon.

Additionally, the reliability of the forecasts was evaluated.
Reliability is the degree to which the forecasted probabilities
are in agreement with the outcome frequencies. This evalu-
ation is best done by constructing a reliability diagram. The
reliability diagrams are constructed with the R-package “reli-
abilitydiag: Reliability Diagrams Using Isotonic Regression”
[17], which is also part of the WE-verify-prob verification-
tool[10]. The package checks the reliability of predictions with
the so-called “Consistent, Optimally binned, and Reproducible
reliability diagrams using the Pool-adjacent-violators algo-
rithm” (CORP) approach [13] (see more detailed description
in section 3.3).
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Fig. 3 Reliability Diagram and histogram for Forecast HR
(high resolution) of the 10-m wind speed at a meteorologi-
cal station on the coast of Denmark with the conditional event
probabilities (CEPs) on the y-axis and respective probabilities
at the x-axis. The blue consistency band is the 90% uncertainty
quantification.

Those not so experienced with the reliability diagram and
its features, can seek help in Figure 14.5 of the IEA-RP [18]
or [19] which illustrate various examples of reliability dia-
grams and how information about calibration , resolution and
uncertainty can be inferred from the graphs.

For our example we have use a threshold of 5, which means
that a minimum of 5 “positives” are needed for an event, a

o
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Fig. 4 Reliability Diagram for Forecast LR (low resolution) of
the 10-m wind speed at a meteorological station on the coast
of Denmark with the conditional event probabilities (CEPs) on
the y-axis and the respective probabilities at the x-axis.The blue
consistency band is the 90% uncertainty quantification.

forecast horizon of 6-11 hours with a change in wind speed of
3m/s over a 3 hour window. Note that the choice of threshold
and event definition is rather sensitive. It is therefore recom-
mended to be very careful in the choice of these limits and
threshold values for the event definitions and choose these care-
fully according to the desired target outcome. We can see in
the examples in Fig. 3 and Fig. 4 that the low-resolution LR
setup shows a tendency to lie on top of the diagonal, except
for the very upper probability bins. This indicates a negative
BIAS and/or a slight mis-calibration. In the lower probabil-
ity bins, there are in both cases somewhat extended horizontal
segments that indicate additionally a diminished discrimina-
tion ability. For the HR setup, this is only pronounced for
those parts within the lower probability bins. Otherwise the
HR setup has a better balance between resolution and calibra-
tion, staying mostly within the blue 90% consistency band. The
fact that both indicators for lack of resolution and calibration
are more pronounced for the low-resolution setup, they con-
firm the expectation of the high-resolution setup being superior
to provide a reliable probabilistic wind speed forecast with a
reasonable resolution. Overall we can conclude from the evalu-
ation that the high-resolution system has a better representation
of the uncertainty in the ensemble and a higher accuracy. The
next step would be a cost-benefit analysis, which often involves
an analysis of the improvements for other end products such as
wind and solar forecasts. The next use-case will deal with that.

4.2 Probabilistic Wind Power Forecast Comparison

The second use case example illustrates the use of a set of met-
rics to compare the performance of two probabilistic forecasts
from different forecast model configurations for the prediction
of the wind power time series and the occurrence of wind ramp
events of a specified magnitude and time duration. The objec-
tive is to select one of the configurations for operational use



based upon the diagnosed differences in forecast performance.
In this example the two alternative forecasts are from the same
two setups of the WEPROG’s MSEPS 75-member ensemble
system as in use case 1 (see section 4.1, but this time converted
into wind power forecasts. They are also labelled as “HR” for
the high resolution and “LR” for the low resolution of the same
system. The forecasts are for the wind power generation that is
fed into a sub-station in the Northwest of Ireland. There are a
few wind generation plants connected to this substation and the
aggregate capacity is 180 MW. The test period extended for 3
months from mid February 2023 to mid May 2023. The evalua-
tion will focus on the the 6- to 11-hour look ahead period. Once
again the WE-verify-prob software [10] was used to verify
power generation predictions from the two sets of forecasts.

The first attribute to be evaluated is the "typical" error of the
probabilistic 1-hour wind power forecasts during the 6 to 11
hour look-ahead period. The CRPS is useful for this objective.
As noted previously the CRPS is the probabilistic analogue
to the MAE for a deterministic forecast. Lower CRPS values
indicate smaller error and therefore better performance. The
CRPS scores for each forecast over the 3-month test period
are listed in Table 2. These results indicate that both forecasts
have a much better score than a reference probabilistic fore-
cast and that the HR configuration performs slightly better than
the LR configuration. The reference forecast here is a distri-
bution constructed from all observations in the time series and
can be compared to a persistence forecast for deterministic ver-
ification, where the observed value at present time will persist
into the future. The Glossary of Meteorology from the Ameri-
can Society of Meteorology describes the persistence forecast
as often being "..used as a standard of comparison in measur-
ing the degree of skill of forecasts prepared by other methods,
especially for very short projections”.

of 0.0 is predicted for every non-event. The BS for each wind
ramp threshold for the two sets of forecasts is shown in Table
3. The bottom row of the table also shows the the difference in
BS between the HR and LR forecasts. The BS metric indicates
that the LR forecasts slightly outperform (i.e. lower BS) the
HR forecasts for all of the thresholds. Often is it said that the
rarer an event, the easier it is to get a good BS without having
any real skill. This is also the case here, where the difference
between the HR and the LR is least for the 60MW over 3 hours
ramp in comparison to the other ramping limits.

Table 3 BRIER SCORE for different ramping limits and
time window.

Fore- 20MW  30MW 40MW 60MW
cast lhour 3 hours 3hours 3 hours
HR 0.0501 0.089 0.0513 0.021
LR 0.0459 0.084 0.0464 0.018
A(HR —LR) 0.0043 0.0053 0.0049 0.0028

Additional information about the forecast performance can
be obtained by decomposing the Brier score into three
components: (1) calibration/reliability (CAL), (2) discrimina-
tion/resolution (DSC/RES) and uncertainty (UNC). The CAL
term measures the degree to which the forecasted proba-
bility agrees with the frequency of event occurrence given
the forecasted probability (conditional event probability). This
attribute is often referred to as the reliability. In the decom-
position of a perfectly reliable forecast (i.e. the frequency of
occurrence always matches the forecasted probability) a CAL
score would have a value of 0.0. In this case, it is often said that
the forecast is "well-calibrated". The second term (DSC/RES)
measures the ability of the forecasts to correctly distinguish dif-
ferences in the probabilities among the cases. This term has a

Table 2 CRPS with results given in MW and percent of installed negative sign in the decomposition equation so higher values

capacity.
Forecast CRPS CRPS
[MW] [% inst. cap]
HR 10.5 5.8
LR 10.9 6.0
Reference 20.6 11.5

Next, the focus of the evaluation procedure shifts to the
assessment of the ability to predict wind ramp events during
the forecast window. Four ramp event thresholds will be con-
sidered: (1) 20 MW change in hour, (2) 30 MW change in 3
hours, (3) 40 MW change in 3 hours and (4) a 60 MW change.
The Brier Score (BS) is the most commonly used metric to
assess the overall accuracy of a probabilistic event forecast. It
measures the mean squared difference between the forecasted
probability ( e.g., 0 to 1) and the actual outcome (e.g., 0 or 1).
Thus, it is analogous to the mean squared error of a determin-
istic forecast. The BS values range between 0 and 1 with lower
values indicating better performance. A value of 0.0 is a perfect
forecast which can only be achieve if a forecasted probability
of 1.0 is made for every event that occurs and a probability

contribute to lower BS values and therefore indicate better per-
formance. The UNC term measures the inherent uncertainty in
the event and is related to the event frequency in the evaluation
sample. Lower values of this term contribute to lower BS val-
ues. The maximum UNC occurs when a event occurs in half of
the cases and the minimum UNC occurs when the event always
occurs or never occurs. Note that this term does not depend on
the forecast and indicates that the BS will be higher for more
uncertain events regardless of the forecast performance.

The values of the three BS decomposition terms for the two
forecasts and the four ramp event thresholds are shown in Table
4, which lists the mean score (as shown in Table 3) and the val-
ues of the three decomposition terms. The CORP approach[13]
was employed to compute the BRIER decomposition for this
example. The decomposition terms are semantically the same
as the description above and in chapter 14.3.1 in [18], but math-
ematically slightly different and statistically more proper. The
main difference is that the classical components from Mur-
phy’s decomposition[20] are, according to Dimitriadis et al.
[13], only exact in the discrete case, but fail to be exact under
continuous forecasts, which we use here. The mathematically



modified components all refer to a reference forecast, which is
defined as the marginal event frequency.

The results in Table 4 indicate that the LR forecasts exhibit
better reliability (lower CAL score) and higher resolution
(higher DSC/RES score) for all four ramp thresholds. The UNC
score is the same for both forecasts, because as noted pre-
viously, it depends only on the frequencies of the events in
the sample and not on the forecast attributes. The 30MW/3hr
events are most frequent in the sample and therefore have the
highest UNC score. It should be noted that the mean BS is high-
est for this event for both forecasts due to the high value of
UNC.

Table4 BRIER’s score de-compostion for different ramping rates

and time windows. The de-composition provide important
additional information to the reliability diagrams with

the mean-score (MS), (mis-)calibration (CAL), discrimination
(DSC/RES) and uncertainty (UNC).

Fore- MS CAL DSC UNC
cast (RES)

Limit: 30MW/3h

HR 0.0892 0.0105 0.0274 0.106
LR 0.0839 0.0062 0.0283 0.106
Limit: 40MW/3h

HR 0.0513 0.0074 0.0153  0.0592
LR 0.0464 0.0029  0.0157  0.0592
Limit: 60MW/3h

HR 0.0210 0.0018  0.0024 0.0217
LR 0.0182 0.0010  0.0045 0.0217
Limit: 20MW/1h

HR 0.0501 0.00494 0.00457 0.0498
LR 0.0459 0.00248 0.00639 0.0498

The reliability of the forecasts can also be viewed from a
graphical perspective. This is typically done by plotting the
forecasted probabilities on the x-axis and the corresponding
conditional event probabilities (CEP) (i.e. the frequency of
observed events given the specific forecast probability) on the
y-axis. Reliability diagrams for the HR and LR forecasts of the
30 MW/3hr ramp event threshold are shown in Figures 5 and
6. The red markers represent the histogram of the actual val-
ues from the forecast evaluation and the closer these are to the
diagonal "perfect agreement" line, the higher the forecast relia-
bility. The diagrams qualitatively indicate that the LR forecast
is more reliable than the HR forecast, which is consistent with
the CAL scores shown in the first two rows of Table 4. How-
ever, the diagram provides more insight into the nature of the
reliability issues with the two forecasts. For example the proba-
bilities of the HR forecasts tend to be too low especially for low
forecasted values, whereas the LR forecasts tend to be slightly
too high except for low forecasted values. In other words, the
LR setup lacks some resolution, but stays more within the 90%
consistency band, while the HR has a negative BIAS (with most
values above the diagonal) and more values outside the 90%
consistency band.

0.00 0.25 050 075 1.00
Forecast value

Fig. 5 Reliability Diagram and histogram for the high-
resolution (HR) forecasts of the 30 MW/3hr wind ramp events
with the conditional event probabilities (CEPs) on the y-axis
and respective probabilities at the x-axis. The blue consistency
band is the 90% uncertainty quantification.

0.00 0.25 050 075 1.00
Forecast value

Fig. 6 Reliability Diagram and histogram for the low-
resolution (LR) forecasts of the 30 MW/3hr wind ramp events
with the conditional event probabilities (CEPs) on the y-axis
and the respective probabilities at the x-axis.The blue consis-
tency band is the 90% uncertainty quantification.

It often useful to examine the event forecast performance
from a deterministic perspective, even if the underlying fore-
cast is based on a probabilistic forecast approach. This is typi-
cally done by either setting a threshold probability (presumably
after calibration) to produce a binary event/no-event forecast
or by counting the number of ensemble members to determine
whether the majority (or some other counting threshold) pro-
duce either events or no events. Once a set of deterministic
forecasts are derived than a contingency table approach can be
used to assess the performance of the forecasts. A contingency
table was generated by the WE-verify-prob tool for the four
wind ramp thresholds considered in this example. The con-
version from the 75-member ensemble data set to the binary



event forecast was performed with an algorithm within WE-
verify-prob. The resulting contingency table is shown in Table
5. This table lists the absolute number of "hits", "misses", "false
alarms" and "correct negatives" in the forecast sample and also
the "hit rate" (HiR) which is the hits per total number of fore-
casts and the "false alarm rate", which is the false alarms per
total number of forecasts.

The results indicate that the LR forecasts have a much higher
hit rate (HiR) for all thresholds but also have a somewhat higher
FAR for each threshold. The most extreme example of this pat-
tern is for the 60MW/3hr threshold. The LR forecasts have
approximately a three times higher HiR, but also a more than 3
times higher FAR.

Table 5 Contingency table inclusive hit rate (HiR), false alarm
rate (FAR).

Fore- Hits Misses False Correct HR FAR
cast Alarms Neg.

Limit: 30MW window: 3h

HR 149 145 153 1990 0.507 0.071
LR 204 90 393 1750 0.694 0.183
Limit: 40MW window: 3h

HR 82 72 91 2192 0.532 0.04
LR 112 42 262 2021 0.727 0.115
Limit: 60MW window: 3h

HR 10 44 31 2352 0.185 0.013
LR 30 24 102 2281 0.556 0.043
Limit: 20MW window: 1h

HR 37 91 101 2208 0.289 0.044
LR 74 54 302 2007 0.578 0.131

Another useful tool to measure the ability of a forecast to
deterministically discriminate between events and non-events
is the Receiver Operatering Characteristic (ROC) curve. This
is a plot of the FPR (“false positive rate”) vs the HiR (hit rate
also known as the “sensitivity”) for all classification thresholds.
In this case, the classification thresholds are different values of
the ramp rate value used to separate forecasted ramp rates into
the "event" or "no event" categories. ROC curves for the HR
and LR forecasts of the 30MW change in 3 hours ramp event
are shown in Figs 7 and 8. Visually, it is noticeable that the
ROC curve for the LR forecasts goes further to the top of the
chart sooner, when going from left (low FPR) to right (high
FPR) on the chart. This indicates that the sensitivity (hit rate)
is higher for a given FPR in this range of the chart.

The “area under the curve” (AUC) is used to summarise the
overall accuracy of the event forecast (see Table 6). Ideally, the
curve ascends vertically at FAR=0.0 and goes horizontally at a
sensitivity (hit rate) value of 1.0. This means every forecast is a
hit and there are no false alarms regardless of the classification
threshold that is selected. In this case the AUC is 1.0, which
is a perfectly accurate forecast. The theoretically lowest value
of 0 indicates a perfectly inaccurate forecast, where there are
never any hits. A value of 0.5 indicates a random result from
the forecast, which can be seen, if the ROC curve sloped diago-
nally from (0,0) to (1.0,1.0) (see also chapter 14.3.4 in [18]. In
practice most forecast systems will produce an AUC between
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Fig. 7 ROC Curve for the 30MW/3hr ramp event threshold for
the high-resolution (HR) MSEPS
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Fig. 8 ROC Curve for the 30MW/3hr ramp event threshold for
the low-resolution (LR) MSEPS.

0.5 and 1.0, with the higher values indicating better forecast
performance.

In this example, the AUC values are lowest with a ramp event
threshold of 20 MW over one hour with a value of 0.7201 for
the HR forecasts and 0.7899 for the LR forecasts. The highest
AUC are for the 40MW over three hour threshold with 0.8584
for the LR forecasts and 0.7916 for the HR forecasts. Table
6 indicates that the HR configuration is not providing a more
accurate forecast of the occurrence of the events as it scores
lower for all event thresholds. This is most likely due to the
higher variability in the higher resolution forecasts

Table 6 The “area under the curve” (AUC) summary table
for different ramping limits and time windows.

Limit 20MW  30MW 40MW  60MW
Window 1h 3h 3h 3h

HR 0.7201 0.7869 0.7916 0.7241

LR 0.7899 0.8351 0.8584 0.8380

A(HR - LR) -0.0043 -0.0053 -0.0049 -0.0028

The range of metrics used in this example provide differ-
ent perspectives on forecast performance and suggest that one
might choose different forecast configurations depending on



what forecast attributes are most important for a particular
application. The recommended practice (see chapter 15.1.5.1
Evaluation Matrix [9] is to use an evaluation matrix or a
cost function (if known) to construct a composite performance
assessment to provide a basis for forecast solution selection.
For this example, we have an evaluation matrix presented in
Table 7. The approach used in this case is to give a score of 1 for
better performance on each metric considered in the evaluation
and then to multiply this score with an Importance Factor (IF)
weight to get the final score. It can be seen that even though the
HR ensemble scores worse overall if all metrics have the same
importance, it has a higher score if the overall performance,
error growth rate and the false alarm rate has higher weight
than the other scores. The false alarm rate can be important, if
such cases have a high cost in comparison to a correct hit.

Table 7 The result table summarises the scoring
for different metrics with an importance factor (IF).
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4.3 Assessment of instrumentation performance at FINO met
mast and Alpha Ventus wind farm

The third use case example focuses on the practical application
of the measurement performance assessment recommendations
made in section 21.5.1 QC for Wind Forecasting Applications
in [21]. This examples illustrates the performance assessment
of wind measurements from a measuring platform (FINO1)
and wind measurements taken at the offshore wind farm Alpha
Ventus.

The Alpha Ventus wind farm is part of the "Research at
Alpha Ventus" (RAVE) test field, an initiative supported by
the German ministry of economic affairs and climate action
* since 2006, before the first offshore wind farm was installed.
The test field contains two times six wind turbines, a substation
and a measurement platform, called FINO1'. It is 45 kilome-
tres to the north of Borkum in the German Bight in a water
depth of some 30 meters. FINOI is located in the immediate
vicinity of three operating wind farms Alpha Ventus, Borkum

*https://rave-offshore.de/en/about-rave.html
thttps://www.finol.de/en/

Riffgrund I and the westbound TrianelWindpark Borkum and
hosts instruments measuring the wind up to 100m.
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Fig. 9 Turbine arrangements, FINO1 measuring mast and off-
shore substation at Alpha Ventus wind farm. Graph kindly
provided by ©Fraunhofer IWES.

The performance control of wind farms and wind turbines is
best conducted in the following four steps:

a) Measuring basic meteorological parameters that can be
used to compute power generation output

+ wind speed and direction
* air temperature

+ barometric pressure

+ relative humidity

b) Conversion of the meteorological parameters into a
power output
The best and recommended way is the IEC 61400-12-1
standard on power performance measurements, which is
based on a physical formula (Equ. 2, chapter 8 [12])

¢) Comparison of power output with measured and fore-
casted input variables

d) Visual Inspection with ensemble generated percentiles

The first step in this example is the evaluation of the

meteorological measurements and generation of statistics that
provide information about the fraction of expected data that
is not available and whether the agreement between forecast
and observation is within an acceptable threshold limit. If the
resulting statistical metrics are outside the threshold limits it
provides an indication for that there may be issues with the
measurements and therefore caution should be taken, when
such measurements are used in short-term forecasting.
The first validation considers the physically realistic ranges
for the respective measurements. These are listed in Table 8.
Table 9 shows the threshold limits for the use case at FINO
and Alpha Ventus for the correlation (CORR), bias (BIAS)
and mean absolute error (MAE) comparison for four measured
variables.



Table 8 Table with threshold limits for the goodness of data filteroutput error derived with a standard power curve computation

of test 1 of the use-case at FINO and Alpha Ventus

Variable unit lower upper
limit  limit
Wind speed m/s 0 40
Wind Direction deg 0 360
Temperature °C -40 40
Surface Pressure PS 800 1.100

Table 9 Variable list and their threshold error limits for the
test 2 of use-case at FINO and Alpha Ventus

Variable Variable Min Max  Max

Number Name CORR BIAS MAE
1 WindSpeed 0.65 3.0 3.0

2 AirTemp 0.75 2.0 2.5

3 WindDirection 0.55 13.0 20.0

4 AirPressure 0.90 50.0 85.0

Table 10 shows an example of results from the evaluation
period for 6 turbines (AV0O7 .. AV12) and the substation (SUB)
that aggregates the power from the individual turbines and con-
nects it with the transmission lines that bring it onshore. The
wind speed for SUB is taken from the FINO1 mast at 100m.
Test 1 encompasses wind speed, temperature, wind direction,
surface pressure with the binary indicators 1 for accepted
quality and O for failing the requirements set out in Table 9.

Table 10 Variable list and their threshold error limits for the
use-case at FINO and Alpha Ventus

Site Test 1 Test2 (Tab9) Description

ID (Tab8) WS T2m  WDIR PS

AV07 1111 111 111 111 111  all tests ok

AV08 1111 111 111 111 111  all tests ok

SUB 1110 111 111 111 000 PS fails all tests

AV09 1101 111 111 100 111 WD fails except for
WD(BIAS) OK

AV10 1101 111 111 101 111 WD fails except for
WD(MAE) OK

AV11 1010 111 000 111 110 T fails on all

AV12 1001 111 000 101 111 T fails and
WD(MAE) fails

The analysis period for the first evaluation set was from June
to October 2021. It should be noted that for a robust statement
about an instrumentation or in real-time environments, where
the measurements are used for real-time forecasting purposes,
a minimum period of one year is ideal (for forecast training and
calibration), but often not available. An alternative — especially
in real-time applications — is to regularly test the performance,
e.g. on a quarterly basis (see e.g. [22]).

Tables 11-13 show another evaluation set for different peri-
ods for individual turbines AV07, AVOS8 and the SUB for the
first three quarters of 2021. In this evaluation set, two more
requirements were added in order to identify performance, but
also availability of the data in real-time: (Test 3): the power

according to IEC 61400-12-1 [23] needs to be 5% lower with
measured wind speed than with forecasted wind speed and Test
4 the delivery rate has to be > 98%.

Table 11 Category “Bad Data Il Missing data + Requirement 2:
Improvement < 5% for 1°¢ quarter of 2021. Test 3 evaluates the
improvement of produced power when computed with measured
instead of forecasted wind. Test 4 verifies the availability of

the measured data.

Site Test 1 Test 2 Test3 Test4
WS T2m  WDIR PS >5%
AV07 0101 O111 1111 1001 1111 0 47.7

Table 12 Category “Bad DATA and MiSSING DATA” for 2¢
quarter 2021. Test 3 and 4 as in Table 11

Site Test 1 Test 2 Test3 Test4
WS T2m WDIR PS >5%

AV0O8 1001 1111 0001 0001 1111 6.57 10.6

AV07 1001 1111 0001 0001 1111 6.14 114

Table 13 Category “Good data” for 3"¢ quarter of 2021. Test 3
and 4 as in Table 11

Site  Test 1 Test 2 Test3 Test4
WS T2m WDIR PS >5%
SUB 1111 1111 1111 1111 1111 2.19 99.8

To summarise the use case of verifying and quality assessing
meteorological measurements at a wind farm, we can con-
clude that the recommendations made in the the IEA Wind
Recommended Practice guideline part four [24] regarding qual-
ity assessment of measurements are important considerations,
when using measurements for forecast assimilation (adapta-
tion) in a real-time environment, for situational awareness or
grid related down-regulation. Unless the data is reliable, the
damage done to a forecast can be greater than the potential
improvement.

In our example evaluation period, the tests revealed the
following about the measured data:

+ observations correlate well with model level 3 at around
100m

+ the observations at heights 90m and 100m show 18%
missing data

+ the best data coverage is between 10m and 40m

+ if signals stall, they stall over most levels, some with phase
shifts of 2-3 time intervals

+ missing data signals are often associated with precipitation
and/or high wind speeds



The two latter observations are consistent with literature (e.g.
[25-27]). As forecaster, as well as operator of instrumentation
and end-user of the data, it is crucial to understand the potential
issues that can arise from a lack of data, wrong or mislead-
ing data. Such analyses can hence provide valuable guidance
to both those that operate the instrumentation, the forecaster
and end-user and usually have well balanced cost-benefit ratio.

5 Summary

The Recommended Practice (IEA-RP) developed by the IEA
Wind TCP under Tasks 36 and 51 provides a comprehensive
set of guidance for the selection and implementation of optimal
forecast solutions for specific applications. This paper provides
a brief overview of the contents of the four parts of the IEA-RP.
It also introduces the development and availability of a com-
panion forecast evaluation tool, called WE-verify-prob [10],
that is a resource for the evaluation of forecast performance
with a focus on the assessment of probabilistic forecasts. How-
ever, the focus of the paper is a presentation of three use case
examples of how specific guidelines of the IEA-RP can be
applied.

The three use case examples are (1) evaluation of prob-
abilistic 10-m wind forecasts for a standard meteorological
measurement site in Denmark and (3) analysis of the perfor-
mance of probabilistic forecasts of the wind power generation
fed into a substation in Northwest Ireland and(3) assessment of
the quality of wind measurement data at an off-shore meteoro-
logical measurement tower in the German Bight. The examples
illustrate the importance of using a set of evaluation metrics
rather than a single metric to assess performance. They also
demonstrate the potential value of constructing a metric matrix
to construct a summary metric that includes a weighting of the
relative importance of different forecast performance attributes
for a specific application. That is, different applications should
have different attribute (i.e. metric) weights in order to obtain a
composite score that is most relevant for a specific application.
In the example presented in this paper, a forecast configuration
that had lower performance in the majority of the metrics was
selected, because it had higher performance for the metrics that
were deemed to be most important for the application.
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