OCTOBER 29, 2024 | NEW BRUNSWICK, NEW JERSEY

Weather Applications in ISO New England's Long-Term Load Forecast

IEA Task 51 Workshop, Rutgers University

ISO-NE PUBLI

Victoria Rojo

LEAD DATA SCIENTIST ISO NEW ENGLAND

ISO New England Performs Three Critical Roles to Ensure Reliable Electricity at Competitive Prices

Grid Operation

Coordinate and direct the flow of electricity over the region's highvoltage transmission system

Market

Administration

Design, run, and oversee the markets where wholesale electricity is bought and sold

Transmission System Planning

Study, analyze, and plan to ensure the transmission system will be reliable over the next 10 years

Uses of Weather at ISO New England

- Load forecasting
 - Short term (intraday, day-ahead, 21-day)
 - Long term (decades)
- Resource planning
 - Capacity market
 - Economic studies

- Transmission planning
- Outage coordination
- Operational assessments and studies
 - Risks of extreme weather

Relevant Features Vary by Application		Sources	
•	Spatial resolution (surface and vertical) Temporal resolution Time horizon (historical and forecast) Expanse and fidelity of weather concepts	•	ERA 5 (public) Climate-adjusted ERA5 (consultant) ASOS observations (vendor) Station-level forecasts, intraday - 7 day (multiple vendors)

ISO-NE PUBLIC

Weather Use Case: Long-Term Load Forecasting

Weather Locations and Concepts

- Day-ahead forecasts use daily 7-day forecasts for 23 ASOS weather stations
- Long-range forecasting maps nearest ERA5 grid points to each of the 23 weather stations
 - ERA5 data are associated with grid points (blue squares) most proximal to the 23 weather stations illustrated to the right (red and light blue circles)
 - Climate-adjusted weather is derived from the same grid points
 - Previous forecasts used only 8 weather stations (red circles)
- Weather concepts
 - Dry bulb temperature
 - Dew point temperature
 - Wet bulb temperature
 - Global horizontal irradiance
- Precipitation rate

ISO-NE PUBLIC

- Snow fall
- Wind speed
- Cloud cover

Weather Source	Use	
Historical ERA5	Model trainingOut of sample model validation	
Climate-Adjusted	 Forecast simulations across base load and electrification forecasts 	

Base Load Model Architecture

A Work In Progress!

- 25 "adapted" short-term forecasting models:
 - A daily energy model that feeds 24 hourly models
 - ~15 weather features (i.e., transformations of dry bulb, dew point, wet bulb, wind speed and cloud cover);
 - ~40 calendar features (i.e., day of week, monthly binaries, various holiday binaries)
 - Statistically-adjusted end use (SAE) variables reflecting trends in efficiency, technology saturations, and economics

ISO-NE PUBL

9-10 years of training history

Forecast Simulation Relies on Climate Scenarios

- A total of 10 climate projections developed by EPRI are based on two emissions pathways and five global climate models (GCM)
 - EPRI's methodology for developing climate projections is described here: An Approach to Synthetic Future Climate Hourly Profiles for Power System Modeling

GCMs

Gridded Climate Projections

Emission pathways explore a range of possible future outcomes

- **SSP1-2.6:** ambitious policy, "lower warming scenario" **SSP3-7.0:** no-policy baseline, "higher warming scenario"

Figure sources: IPCC WGI AR6 Report (2021) SPM.4 (left), GCM schematic by Jablonowski & Limon (2020), North America CMIP6 ensemble for 2C average warming (IPCC 2021)

Five selected Global Climate Models (GCMs) span a range of climate sensitivities

- NOAA Geophysical Fluid Dynamics Laboratory: GFDL-ESM4 2.7°C Max Planck Institute (Germany): MPI-ESM1 3.0°C Meteorological Research Institute (Japan): MRI-ESM2 3.1°C Institut Pierre-Simon Laplace (France): IPSL-CM6A 4.6°C
- .
- .
- UK Met Office: UKESM1 5.4°C

ISO-NE PUBLIC

Maximum Summer Daily Temperature, 10 Climate Realizations

Selection of Climate Projection for Forecasting

ISO-NE PUBLIC

- Plots compare the probability of exceedance of summer daily maximum (left) and winter daily minimum (right) temperatures for BDL weather station in CT
 - Extreme tails of distribution shown
- Selected scenario: IPSL-SSP3-7.0
 - GCM: IPSL
 - Emissions pathway: SSP3-7.0
- Selection based on:
 - 1. Moderate warming, especially in near-term
 - 2. Relatively uniform pace of warming

9

Calculation of Seasonal Peaks

Example for a Single Forecast Year

Typical Seasonal Load Shapes

- Example profiles can be extracted for any "weather day", for any given forecast year
- Captures the coincident effect of weather on all load components
- Results provide insights into important load characteristics:
 - Midday minimum loads in spring caused by BTM PV
 - A morning winter peak as HP adoption increases

Evolution of Peak Load Timing, 2024-2050

Example: Timing of Highest 5% of Daily Peaks in Each Season

ISO-NE PUBLIC

- Example of changes in peak timing that emerge from hourly methodology
- The forecast for each year of the forecast horizon is based on 73 years of hourly simulations
- BTMPV helps serve the winter peak once it shifts to morning hours

12

Thank You

