

IEA Task 46 Erosion of Wind Turbine Blades

IEA Task 46: Where are we now?

Charlotte Bay Hasager (DTU), Operating Agent

Technology Collaboration Programme

6th International Symposium on Leading Edge Erosion and Protection of Wind Turbine Blades, 4-6 February 2025, DTU, Risø, Roskilde

The purpose of IEA Task 46 is to

- improve understanding of the erosion driving factors,
- develop datasets and model tools to enhance prediction of leading-edge erosion likelihood,
- identify damage at the earliest possible stage and,
- advance potential solutions.

Coordination

Gantt timeline

Year/År	2021									2022										202	23									2024						-			202	2	Ϋ	
Work packages		3	3 4	5	6	7	89	10 1	1 12	1	2	3 4	4 5	6	7	8	9 1	0 11	1 12	2 1	2	3	4	5	6 7	8	9	10 1	1 12	1	2	3 4	1 5	6	7 8	9	10 1	1 12	2	1 2	2	3
Running month during project		1	1 2	3	4	5	67	8	9 10	11	12 [·]	3 14	4 15	16	17	18	19 2	20 21	1 22	2 23	24	25	26	27 2	28 29	30	31	32 3	3 34	35	36 3	37 38	3 39	40 4	42	43	44 4	5 46	6 4	7 48	1	
WP1 Management																																										
WP1.1 Public web site				D1.1																																						
WP1.2 Technical support																																										Γ
WP1.3 External communication		D1.	3		D1.3						01.3				0	01.3					D1.3					D1.3	3				D	1.3			D1.3	3				D1.	3	
WP1.4 Coordination meetings		D1.	4		D1.4					D1.4					D1.4					D1.4	4				D1.	4				D	1.4			D1	4				D1.4	4		
WP1.5 Webinars outreach													D1.5																D1.5	;		D1.	5								C 1.	.5
WP1.6 Report to IEA ExCo											D1.6										D1.6										D	1.6									C 1.	.6
WP2 Climatic conditions																																										
WP2.1 Definition of priority geographies								D2	.1																																	
WP2.2 Identify meteorological parameters								D2	.2																																	
WP2.3 Hail, rain and dust																						D2.3																				
WP2.4 Droplet size in climates																		D2.	.4																							
WP2.5 Data availability and quality																		D2.	.5																							
WP2.6 Road for LEE atlas																																								D2.	6	
WP2.7 RP for measurements																																								D2.	7	
WP2.8 Advance models on LEE																																									E 2.	.8
WP3 Wind turbine operation with erosion																																										
WP3.1 Model to predict annual energy																																								D3.	1	
WP3.2 RP on standardization of damage report																				D3.2	2																					
WP3.3 Droplet impingment model for fatigue																																								D3.	3	
WP3.4 Potential for erosion safe mode																																								D3.	4	
WP3.5 LEE performance model validation																																								D3.	5	
WP4 Laboratory testing of erosion																																										
WP4.1 Technology reports on evaluaion of LEE																			D4.	.1																						
WP4.2 Erosion failure in coating, tape, shell																								D	4.2																	
WP4.3 Software for RET VN-curve																																					D4	4.3				
WP4.4 Pre-evaluation of specimen																																								D4.	4	
WP4.5 Round-robin from RET																																								D4.	5	
WP4.6 Mechanical testing, pre-evaluation																																								D4.	6	
WP5 Erosion mechanisms and material propertie	es																																									
WP5.1 Damage models for rain erosion																																								D5.	1	
WP5.2 Multilayer systems																																								D5.	2	
				1						1						_		-						_	_						_	_			1		_				<u> </u>	_

Technology Collaboration Programme

Timeline (year #4)

Date	event	status
31/03//2023	Invoicing year # 4	August 2024
18/04/2024	7th bi-annual plenary meeting (online)	online
21-24/05/2024	Task 46 presents in ExCo #94 (Italy)	Face-to-face ExCo
Aug/2024	Quarterly coordination telco (WPLs & OA)	
17-18/09/2024	Presentation at Blade workshop, NM, USA	Face-to-face public
19/09/2024	Special Session from Task 46 Albuquerque, NM, US - Sandia as Host	Face-to-face public
19-20/09/2024	8th bi-annual plenary meeting in Albuquerque, NM, US - Sandia as Host	Face-to-face task participants
Autumn 2024	ExCo #95 (online)	online
Nov/2024	Quarterly coordination telco (WPLs & OA)	online
5 Dec/2024	Dissemination public webinar	online
Feb/2025	Quarterly coordination telco (WPLs & OA)	online
4-6/02/2025	Final presentations 6th Erosion symposium	Face-to-face public
7/2/2024	Technical Workshop	Face-to-face task participants
March/2025	Final bi-annual plenary meeting (online)	online
14/03/2025	FINAL REPORT	

Dissemination events planned beyond Phase 1

- Wind Europe 18-20 April 2025 in Copenhagen
 - Oral presentation *Hasager et al.*
- Wind Energy Science Conference (WESC) 24-27 June 2025 in Nantes
 - Mini-Symposion: Leading Edge Erosion: An Aerodynamic Perspective

MS#03.2 Leading Edge Erosion: An Aerodynamic Perspective

• F. GRASSO¹, D. MANIACI², G. SCHEPERS³, A. OLSEN⁴

¹ Vestas Technology Centre Porto |² Sandia Lab |³ TNO |⁴ DTU Dept of Wind and Energy Systems

• Aerodynamics, aeroelasticity and acoustics

The erosion of the leading edge is a critical issue which reduces the lifetime of the blades. Tailored maintenance strategies and protective solutions for the leading edge became more and more popular development topics. The symposium focuses on the impact of the erosion on the rotor performance and its implications in terms of aerodynamic modelling and blade design strategy.

 The IEA Task 46 (Erosion of wind turbine blades), the IEA Task 47 (TURBINIA TURBulent INflow Innovative Aerodynamics), and the Danish project LERCat (Leading Edge Roughness Categorisation) jointly organize the mini-symposium. Mentimeter – Results From the Survey at the Sandia Blade Workshop, September 18, 2024

Techno by lea

IEA Task 46 Phase 1 and Phase 2

- Phase 1 started 15 March 2021 and end 14 March 2025
- Phase 2 starts 15 March 2025 and end 14 March 2029

Purpose of the Task 46 extension

• The purpose of the extension of the IEA Wind Task 46 is to further improve understanding of the erosion driving factors, develop datasets and model tools to enhance prediction of leading-edge erosion likelihood, identify damage at the earliest possible stage and advance potential solutions.

Task Scope Alignment with Research Priorities by IEA Wind TCP

- **Resource and site characterization**: Improving the practices in resource characterization regarding susceptibility to erosion at wind farm sites.
- **Advanced technology**: erosion damage models, material properties, characterization of erosion resistance; characterization and improvement of wind turbine operation with erosion.

Task Scope Alignment with Grand Challenges

- Wind resources, atmospheric science, and the physics of air flow at wind farms.
- System dynamics and materials involved in wind turbines and wind farm technology.
- Optimization and control of wind farm operation and maintenance for reliability and resiliency.

IEA Task 46 Phase 2 coordination

Work Package	Lead organization
WP 1: Management	DTU (DK) Professor Charlotte Bay Hasager (Operating Agent) Professor Christian Bak (Co-operating Agent)
WP 2: Climatic conditions	Cornell University (US) Professor Sara Pryor (WP-lead) Professor Rebecca Barthelmie (Co-lead)
WP 3: Wind turbine operation with erosion	Sandia National Laboratories (US) David Maniaci, PhD Rotor Blade and Wind Plant Aerodynamics Lead (WP-lead) CENER (ES) Beatriz Mendez, PhD Head of Aerodynamics and Hidrodynamics (Co-lead) University of Lancaster (UK) Sergio Campobasso, PhD Senior Lecturer (Co-lead)
WP 4: Laboratory testing of erosion and material blade integration	DTU (DK) Nicolai Frost-Jensen Johansen, PhD Development Engineer (WP-lead) AIST (JP) Motofumi Tanaka, PhD Senior Researcher (Co-lead)

Objectives and Expected Results

	PIRT (International Phenomena Identification and Ranking) analysis to identify meteorological parameters of critical importance to LEE
WP 2: Climatic	Recommended report for measurement of LEE drivers
conditions	Assessment of modelling capabilities to represent key atmospheric drivers of LEE
	Roadmap for LEE atlas

Objectives and Expected Results cont.

	Updated erosion classification system with report, collaboration across work packages with recent participant results
	Aerodynamic benchmarking and simulations, and reference models
	AEP loss and reference erosion turbines models
WP 3: Wind turbine	Design of an experiment to assess the accuracy of LEE performance loss models
operation with erosion	Development of methods for erosion safe-mode operation
	Lifetime erosion modelling and O&M decision making
	Improved droplet impingement model for use in fatigue analysis based on field observations
	System integration and uncertainty analysis

Objectives and Expected Results cont.

Gantt diagram																																				
Project title: IEA Wind Task 46 Erosion Phase 2																																				
Project start: 15 March 2025																																				
Project end: 14 March 2029																																				
Year/År	202	25						20	26								2027	7							20	28								202	9	
Work packages/Projektets arbejdspakker:	3	3 4	5 6	5 7	8	9 10) 11	12	1 2	3	4 5	6	7 8	9	10 1	1 12	1	2 3	4	5 6	5 7	8	9 10	0 11	12	1 2	3	4	5 6	7	8 !	9 10	11 1	2 1	1 2	3
Running month during project	1	2	3 4	1 5	6	7 8	3 9	10 1	1 12	13 1	4 15	16 1	7 18	19	20 2	1 22	23	24 25	26	27 28	3 29	30	31 32	2 33	34 3	5 36	37	38	39 40	41 4	12 4	3 44	45 4	6 47	7 48	
WP1 Management																																				
WP1.1 Public web site		D1	.1																																	
WP1.2 Technical support		D1	.2																																	
WP1.3 External communication	D1.3	3	D1.	3					D1.3				D1.3	3				D1.3				D1.3					D1.3			D	1.3				D1.3	
WP1.4 Coordination meetings	D1.4	4	D1.	4				D1	.4			D1	1.4				D1.4				D1.4					D1.4	1			D1.4				D1.4	1	
WP1.5 Outreach webinars									0	1.5								D1.5										D1.5								
WP1.6 Report to IEA ExCo									D1.6									D1.6									D1.6									
WP2 Climatic conditions																																				
WP2.1 PIRT analysis to identify meteorological parameters					D2.1																															
WP2.2 Recommended Practice for measurement of LEE drivers													D2.2	2																						
WP2.3 Modeling capabilities of key atmospheric drivers of LEE																						D2.3														
WP2.4 Roadmap for LEE atlas																																	D2	.4		
WP3 Wind turbine operation with erosion																																				
WP3.1 Updated erosion classification system with report								D3.1																												
WP3.2 Aerodynamic benchmarking and simulations													D3.2	2																						
WP3.3 AEP loss and reference erosion turbines models																D3.3																				
WP3.4 Design of an experiment to assess the accuracy of LEE perf	ormai	nce los	s																	D3.	4															
WP3.5 Development of methods for erosion-safe mode operation																													D3.5							
WP3.6 Lifetime erosion modeling and O&M decision making									D3.6																											
WP3.7 Improved droplet impingement model for use in fatigue analy	/sis																	D3.7																		
WP3.8 System integration and uncertainty analysis																																	D3	.8		
WP4 Laboratory testing of erosion																																				
WP4.1 Large-scale comparison and round robin of RET testers									D4.1																											
WP4.2 RET under different climatic conditions																		D4.2																		
WP4.3 Impact of microplastics emissions from erosion																							D4.	.3												
WP4.4 Incorporation of weathering into RET protocol																													D4.4							
WP4.5 Design of specimens with predefined defects																																	D4	.5		
WP4.6 Durability testing and material property									D4.6																											
WP4.7 Failure modes and mechanisms of soft materials																									D4.7											
WP4.8 Material failure in the real blade erosion																																	D4	8		
Milestones																																				
M1 Kick-off meeting	M1																																			
M2 Release of first technical deliverables				1	12																															
M3 First outreach seminar									M3																											
M4 Release of Recommended Practise report													M4																							
M5 Half of technical deliverables completed																		M5																		
M6 Final outreach at International Symposium on Erosion																																			M6	
																																				_

Technology Collaboration Programme

by Iea

Deliverables

Approximately 20 technical documents with actionable information for the industry and academia:

- 8 deliverables with high TRL results including recommended reports and validated models.
- 12 deliverables with low TRL results including literature surveys, state of the art reports, roadmaps and reports on available technologies.

Outreach and Dissemination

- Webinars outreach yearly
- •Face to face contributions to conferences such as the International Symposium on Erosion of Wind Turbine Blades each year
- •Deliverables at the Task 46 website

The approved Phase 2 project plan is available at

https://share.dtu.dk/sites/IEA WIND T46 493900/Shared%20Documents/Fo rms/AllItems.aspx?id=%2Fsites%2FIEA%5FWIND%5FT46%5F493900%2FShare d%20Documents%2FPhase%202%2FWork%20Plan

Participants

- The work plan is delivered by 41 organizations from 12 countries:
 - 1 certification body
 - 6 wind farm owners
 - 2 consultancy
 - 4 wind turbine manufacturers
 - 8 coating manufacturers
 - 19 academic/R&D organizations

Country	Contracting Party	Participant Organization
- · · ·		
Belgium	Belgian Ministry of Economy	Engie
Canada	Natural Resources Canada	WEICan
Denmark	Danish Energy Agency	DTU , Hempel, Ørsted, PowerCurve, Siemens Gamesa Renewable Energy,
Finland	Business Finland	VTT
Germany	Federal Ministry for Economic Affairs and Energy	Fraunhofer IWES , Emil Frei (Freilacke), Nordex Energy SE, Mankiewicz, RWE, Henkel
Ireland	Sustainable Energy Authority of Ireland	South East Technological University, University of Galway, University of Limerick
Japan	New Energy and Industrial Technology Development Organization	AIST, Osaka University, Tokyo Gas Co. Asahi Rubber Inc.
Netherlands	Netherlands Enterprise Agency	TU Delft, TNO
Norway	Norwegian Water Resources and Energy Directorate	Equinor, University of Bergen, Statkraft
Spain	Centre for Energy, Environmental and Technological Research	Aerox, CENER, Nordex Energy Spain, DNV Iberica, Universidad Cardenal Herrera – CEU
UK	Offshore Renewable Energy Catapult	ORE Catapult, University of Bristol, Lancaster University, Imperial College, Vestas UK, Ilosta
US	US Department of Energy	Cornell University, Sandia National Laboratories, 3M

Who can participate in Task 46?

Technology Collaboration Programme

https://iea-wind.org/task46

https://iea-wind.org/task46/

Technology Collaboration Programme

Thank you!

IEA Wind TCP functions within a framework created by the International Energy Agency (IEA).

Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.

IEA Wind is part of IEA's Technology Collaboration Programme (TCP).

Contact

Operating Agent: Charlotte Hasager (cbha@dtu.dk)