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Purpose 
Leading edge erosion (LEE) of wind turbine blades has been identified as a major 
factor in decreased wind turbine blade lifetimes and energy output over time. 
Accordingly, the International Energy Agency Wind Technology Collaboration 
Programme (IEA Wind TCP) has created the Task 46 to undertake cooperative 
research in the key topic of blade erosion. Participants in the task are given in Table 
1. 
The Task 46 under IEA Wind TCP is designed to improve understanding of the 
drivers of LEE, the geospatial and temporal variability in erosive events; the impact 
of LEE on the performance of wind plants and the cost/benefit of proposed mitigation 
strategies. Furthermore Task 46 seeks to increase the knowledge about erosion 
mechanics and the material properties at different scales, which drive the observable 
erosion resistance. Finally, the Task aims to identify the laboratory test setups which 
reproduce faithfully the failure modes observed in the field in the different protective 
solutions.  
This report is a product of Work Package 2 Climatic conditions driving blade 
erosion. 
The objectives of this report are to: 

• Summarized recent research using Numerical Weather Prediction (NWP) 
models to make predictions of the meteorological drivers of wind turbine blade 
LEE in the context of: 

a. Assessing the erosion climate over a region i.e. enabling development 
of erosion atlases 

b. Making day-ahead forecasts of highly erosive periods to inform 
possible use of erosion safe mode operation 

• Describe data and metrics that have been used to quantify simulation fidelity 
in the context of wind turbine blade LEE applications  

• Make recommendations regarding the process of building a robust model 
verification and validation (V&V) framework for assessing simulation fidelity in 
the context of wind turbine blade LEE  
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Table 1 IEA Wind Task 46 Participants.  

Country Contracting Party  Active Organizations 

Belgium 

The Federal Public Service of 
Economy, SMEs, Self-Employed and 
Energy 

Engie 

Canada Natural Resources Canada WEICan 

Denmark 

Danish Energy Agency DTU (OA), Hempel, Ørsted A/S, 
PowerCurve, Siemens Gamesa 
Renewable Energy 

Finland Business Finland VTT 

Germany 

Federal Ministry for Economic Affairs 
and Energy 

Fraunhofer IWES, Covestro, Emil Frei 
(Freilacke), Nordex Energy SE, RWE, 
DNV, Mankiewicz, Henkel 

Ireland 

Sustainable Energy Authority of 
Ireland 

South East Technology University, 
University of Galway, University of 
Limerick 

Japan 

New Energy and Industrial 
Technology Development 
Organization 

AIST, Asahi Rubber Inc., Osaka 
University, Tokyo Gas Co. 

Netherlands Netherlands Enterprise Agency TU Delft, TNO 

Norway 
Norwegian Water Resources and 
Energy Directorate 

Equinor, University of Bergen, Statkraft 

Spain 
CIEMAT CENER, Aerox, CEU Cardenal Herrera 

University, Nordex Energy Spain 

United Kingdom 

Offshore Renewable Energy Catapult ORE Catapult, University of Bristol, 
Lancaster University, Imperial College 
London, Ilosta, Vestas 

United States 
U. S. Department of Energy Cornell University, Sandia National 

Laboratories, 3M 
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Executive Summary 
Wind turbine blade leading edge erosion (LEE) reduces electricity production and 
increases wind energy operation and maintenance costs. Numerical Weather 
Prediction (NWP) models such as the Weather Research and Forecasting (WRF) 
model have long been employed for wind resource assessments and short-term 
power production forecasts. These models also have potential utility in assessment 
of both the long-term erosion climate and short-term forecasting for erosion safe 
mode operation. However, these applications require simulation fidelity that has not 
yet been demonstrated. This report summarizes recent work to develop a preliminary 
V&V framework for quantifying model fidelity of LEE relevant properties and that has 
demonstrated critical model configuration components that dictate model skill. 
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1. Introduction  
Erosion of wind turbine blade coatings with subsequent exposure and erosion of the 
substrate causes decreased aerodynamic performance and increases operation and 
maintenance costs. At most locations, the primary cause of wind turbine blade 
leading edge erosion (LEE) is materials stresses caused by falling hydrometeors 
impacting on rapidly rotating wind turbine blades (Bartolomé and Teuwen 2019; 
Bech; Hasager; Bak 2018; Letson; Barthelmie; Pryor 2020; Pryor; Coburn; 
Barthelmie 2025; Pryor et al. 2022; Zhang et al. 2015). The amount of kinetic energy 
transferred from an ensemble of falling hydrometeors is dictated by:  
(a) The closing velocity between the hydrometeors and the blade. Variations in wind 

turbine blade rotational speed are a function of incident wind speed at the hub-
height. The rotational speed of the wind turbine blades during typical operation 
exceeds the terminal fall velocity of hydrometeors and hence generally dominates 
the closing velocity between falling hydrometeors and wind turbine blades. 

(b) The number, size and phase of hydrometeors that impact the blade leading edge. 
The number of larger droplets is greatly enhanced under conditions with heavier 
precipitation (i.e. higher rainfall rates that describe the accumulation of water at 
the surface in a time interval) and/or when hail is present (Pryor et al. 2022). With 
respect to phase, collisions with hail (ice) versus rain (liquid) droplets may be 
more damaging than impacts from liquid hydrometeors (Heymsfield et al. 2018; 
Keegan; Nash; Stack 2013; Kim and Kedward 2000; Macdonald and Stack 2021; 
Savana 2022; Zhu et al. 2022). Note, although there is evidence that larger 
droplets that are more numerous during intense precipitation cause higher 
materials stresses (Pryor et al. 2024), hydrometeor size distributions (HSD) at the 
ground are typically not available from models or measurements. Thus 
development of erosion atlases based on availability of size-resolved droplet 
concentrations require post-processing of simulated/observed precipitation 
intensity using empirical relationships to derive HSD (Pryor; Coburn; Barthelmie 
2025). 

Numerical Weather Prediction (NWP) models such as the Weather Research and 
Forecasting (WRF) model (Skamarock et al. 2019) can simulate the space and time 
variability and magnitude of precipitation intensity/phase and wind speeds with 
relatively high fidelity. They thus have the potential to be used in two contexts within 
LEE prediction: 
(a) Erosion climate assessment (i.e. development of ‘erosion atlases’). Geospatially 

explicit estimates of LEE potential can enable wind farm developers to assess the 
costs/benefits of applying blade leading edge protection (LEP) at a given 
location(s) (Ansari et al. 2024; Herring et al. 2019; Katsivalis et al. 2022; Major et 
al. 2021; Sareen; Sapre; Selig 2014) and could help in scheduling blade 
inspections and maintenance scheduling/contracts at specific locations (Nielsen; 
Tcherniak; Ulriksen 2020; Papaelias and Márquez 2020). If erosion atlases also 
include high time-resolution in terms of damage accumulation (Pryor; Coburn; 
Barthelmie 2025), they could also provide critical information regarding Levelized 
Cost of Energy (LCoE) benefits from dynamic operation to reduce erosion (i.e. 
implementation of safe mode operation wherein the rotor speed is reduced during 
periods associated with high damage (Bech; Hasager; Bak 2018; Letson and 
Pryor 2023)). 
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(b) Short-term (day-ahead) forecasting for erosion safe mode operation (Bech; 
Hasager; Bak 2018; Letson and Pryor 2023). Forecasts of the potential need for 
dynamical operation to reduce coating damage could aid in accurate bidding on 
the day-ahead electricity market in a manner analogous to short-term power 
production forecasts (Tuncar; Sağlam; Oral 2024).  

However, these applications represent stringent requirements for simulation fidelity 
in terms of the time and space joint (or copula) probabilities of wind speed and 
precipitation intensity plus the occurrence and size of hail. Intense precipitation (high 
rainfall rates) and hail are challenging for numerical models to accurately simulate 
(Adams-Selin et al. 2019; Davenport 2021; Gagne et al. 2017; Kumjian and 
Lombardo 2020; Prein et al. 2021; Scaff et al. 2020; Shepherd et al. 2024; Snook et 
al. 2016) due in part to complex cloud microphysics processes (Morrison et al. 2020; 
Tao et al. 2016) and strong, non-linear atmosphere-surface coupling (Dai; Williams; 
Qiu 2021; Feng et al. 2018). Model fidelity with respect to wind speeds is also a 
strong function of grid spacing, land use, topography and planetary boundary layer 
scheme employed (Carvalho et al. 2012; Hahmann et al. 2020; Jiménez and Dudhia 
2013; Pryor and Hahmann 2019). Hence, there is a need for research to: 

• Assess the fidelity of NWP models with respect to parameters of critical 
importance to LEE as a function of the model configuration. Such fidelity 
assessment must be predicated on application of appropriate statistical 
metrics of skill. 

• Establish a robust Verification and Validation (V&V) framework (Thacker et al. 
2004) that encapsulates the aspects of NWP simulation(s) critical to both the 
long-term erosion climate and short-term prediction of erosive events. Note, 
herein “Verification” means determining if a model is implemented in a 
manner that represents the physical understanding of the process(es) and 
“Validation” is the process of determining the degree to which the model 
represents the real world (i.e. agreement with observations). The expected 
outcome of a model V&V process is a quantitative statement of the agreement 
between experimental data and model prediction, as well as the predictive 
accuracy of the model. 

2. Recent NWP simulations and validation in the context of LEE  
This report focusses on three recent studies employing WRF simulations within the 
U.S. southern Great Plains (SGP). This geographic focus is partly due to the 
concentration of wind turbine assets in this region and the frequency of high wind 
speeds, intense precipitation, and hail (Figure 1). Annual total precipitation within the 
SGP exhibits large scale gradients (Figure 1a). Precipitation intensity and 
occurrence also exhibit very high spatiotemporal variability (see examples in Figure 
2). Even under strong large scale (synoptic) forcing (e.g. Figure 2b, 9 March 2024) 
although precipitation is wide-spread, regions with highest intensity are often 
associated with embedded cells with deep convection and hence are rather 
localized. For this and other reasons, use of high resolution NWP simulations (i.e. 
use of small grid spacing) is necessary to capture the hydroclimate (Prein et al. 
2021). 
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Figure 1 Wind turbine locations and (a) annual total precipitation (mm) and (b) hail frequency 

in the U.S. Southern Great Plains.  
 (a) Colored dots show mean annual total precipitation at Automated Surface Observing Station 
(ASOS) sites computed using 1-min observations from 2005 to 2022 (Pryor; Coburn; Barthelmie 
2025). (b) Colored contours show the mean number of hail days per year based on the NASA 
Passive Microwave Hail Climatology Data Products V1 dataset (Bang and Cecil 2019). Black dots 

indicate locations of wind turbines at the end of 2023.

 

 

 
Figure 2 Illustrative examples of spatiotemporal variability of precipitation in the U.S. Southern 

Great Plains.  
5-minute observations with a dual polarization scanning Doppler RADAR located in Oklahoma 
City (Oklahoma/Texas state boundary shown by the thin black line) during (a) 7 March 2024, (b) 

8 March 2024, (c) 9 March 2024 and (d) 24 March 2024. Left panels: Maximum precipitation 
intensity (mmhr-1). Right panels: Number of all ~5-minute measurement periods within each 

day with non-zero precipitation. Data are measured at high spatial resolution but are presented 
here on ~ 4´4 km grid to aid legibility. Black dots indicate the locations of wind turbines. 

Two of the studies (study 1 and 2) summarized herein were undertaken in the 
context of building an erosion atlas (i.e. quantifying the long-term spatial variability in 
wind turbine blade coating lifetimes). Accordingly, these simulations used lateral 
boundary conditions from reanalysis products and are conducted in a manner similar 
to those used to develop regional climate projections (Pryor et al. 2023a) and/or 
mesoscale wind resources assessments (such as the New European Wind Atlas 
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(Dörenkämper et al. 2020; Hahmann et al. 2020)). The third study (study 3) applies 
and evaluates WRF in the context of day-ahead forecasting (i.e. short-term 
simulations performed within very high-fidelity lateral boundary conditions) and 
specifically focusses on forecast fidelity as a function of WRF model formulation. 
Based on considerations described above, all simulations were performed at so-
called convection permitting model resolution (dx < 4 km). These studies are 
presented below to illustrate the types of data, methods and metrics that can be 
employed within a model V&V framework and to draw out inferences regarding use 
of NWP simulations for LEE erosion atlases and short-term forecasting for erosion 
safe mode operation in the SGP. 
2.1 Study 1: Letson et al. (2020). 
The initial study (Letson et al. 2020a; Letson et al. 2020b) provided the first 
assessment of the fidelity of the Weather Research and Forecasting (WRF) model 
with respect to the atmospheric drivers of wind turbine blade LEE. It comprised a 25-
day simulation with an inner-most domain grid spacing (dx) of 1.33 km by 1.33 km. 
The simulation output at 10-minute intervals was evaluated relative to: 

• Multiple products from nine dual polarization Doppler RADARs: 
• Composite RADAR reflectivity (cREF, decibels (dBZ)). High values of cREF 

and the coverage of high cREF were used to identify the presence and spatial 
extent of deep convection and heavy precipitation. This property is the 
maximum reflectivity in each vertical column and can be directly derived from 
measurements with RADAR. However, it must be computed using 
approximations based on cloud droplet properties in WRF simulations. The 
occurrence and spatial extent of cREF > 40 and 50 dBZ were employed as 
metrics of deep convection and, for the second threshold, a high likelihood of 
hail occurrence (Witt et al. 1998). The spatial patterns of the total frequency of 
occurrence of cREF above these thresholds over the 25-day period from 
RADAR and WRF were compared to assess whether preferred locations of 
deep convection were well-reproduced. Further comparisons included time 
series of the domain-wide total spatial extent of exceedance of the cREF 
thresholds in each 10-minute period to assess whether the time variation of 
the scale of deep convection was properly reproduced. Finally, cumulative 
probability distributions of cREF from areas surrounding individual RADAR 
and the corresponding WRF grid cells to quantify whether the dynamic range 
of cREF was accurately simulated. 

• Simulated spatial variability of total accumulated precipitation (mm in each 
WRF grid cell) and time variability in precipitation rate (mmhr-1) across the 
simulation domain as derived from the WRF output were evaluated relative to 
RADAR estimates derived using observed reflectivity and Z-R relationships 
(NOAA 2016a). As with the cREF analyses, time series of domain-wide 
accumulated precipitation from WRF and RADAR were also compared to 
determine if the time variation (e.g. duration) of precipitation events was 
captured. Since the time series of cREF and precipitation are not drawn from 
Gaussian distributions, Spearman (rank) correlation coefficients were used in 
the skill assessment. 

• Hail occurrence/amount/size. The presence and geographical location (in 
latitude and longitude) of hail producing clouds is diagnosed from RADAR 
measurements based on reflectivity, aspect ratio of hydrometeors, vertically-
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integrated liquid, and altitude of the melting layer (NOAA 2016b; Wallace et al. 
2019; Witt et al. 1998). Where hail is diagnosed as present, RADAR-based 
estimated 75th percentile hailstone diameter (maximum estimated size of hail 
(MESH)) is also generated. Accumulated depth of hail at the ground and 
MESH can be output from WRF but are not directly comparable to the 
RADAR reports. Thus, total hail accumulation at the ground in each WRF grid 
column was compared to the number of RADAR hail reports within 100 km of 
each RADAR station and time series of hail occurrence within the domain 
from RADAR and WRF. Contingency tables, which is a matrix format table 
that displays multi-variate frequency distributions most usually for classed (or 
categorical) variables, and skill metrics for rare events were used to evaluate 
the simulations. Based on the generic example of a simple contingency table 
(Table 2), the following statistical metrics were computed and presented:  

Proportion correct:                     (1) 

Hit rate:                                   (2) 

False alarm rate:                                (3) 

Odds ratio:	𝜃 = !
"#!

$
"#$
$                                  (4) 

where a = number of hits (correct predictions of events), b = false alarms 
(predictions of events when none occurred), c = misses (event occurred 
without a prediction) and d = correct negatives (correct forecasts of no event).  

Table 2 Example contingency table. 

Modeled¯ \ Observed® Event (e.g. hail) No event (e.g. no hail) 

Event (e.g. hail) a b 

No event (e.g. no hail) c d 

• Wind speeds at 10-m height a.g.l. were evaluated relative to observations from 
nine two-dimensional sonic anemometers of the NWS Automated Surface 
Observation System (ASOS) (Schmitt and Chester 2009) using Spearman (rank) 
correlation coefficients for the time series at given locations. Cumulative density 
functions (CDF) of observed wind speeds at the ASOS stations were also 
compared with those from the WRF grid cells containing each ASOS station. 

• Wind turbine electrical power production estimates from the Fitch wind farm 
parameterization in the WRF simulations (Fitch et al. 2012) were evaluated 
relative to observed wind energy power production in each 15 minute period as 
aggregated across the Electric Reliability Council of Texas (ERCOT) power 
system (Fertig 2019) again using Spearman correlation coefficients.  

Key results of these analyses included: 
o The frequency of occurrence of high cREF is positively biased in the WRF 

simulations relative to the RADAR. This likely caused by errors in the 
representation of the size and number of cloud droplets produced by the 
Milbrandt-Yau (Milbrandt and Yau 2005a; Milbrandt and Yau 2005b) 

a dC
a b c d

+
=

+ + +

aH
a c

=
+

bF
b d

=
+
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microphysics scheme. This can cause biases in precipitation rates and hail 
occurrence (Tao et al. 2016) and was a primary motivator of study 3 which 
involved systematic assessments of different microphysics schemes across a 
range of convective environments.  

o In general, the spatial gradients in accumulated precipitation were reproduced 
in the simulations, but the precise timing (and location) of heavy precipitation 
was not well-captured. 

o Hours with WRF-simulated hail occurrence in 100-km radii around each of the 
nine RADAR stations exhibit a mean proportion correct of 0.77 (range of 0.69 
to 0.84 across the nine RADARs) and the false alarm ratio ranges from 0.06 
to 0.16. The mean odds ratio is 4.55 (range of 0.89 to 10.46). The odds ratio 
(Stephenson 2000) is even higher for the most intense hail events indicating 
good skill. However, there was evidence of excessive production of hail in the 
simulations.  

o Wind speeds at 10-m height from WRF exhibit relatively good, but spatially 
varying agreement, with ASOS observations both in terms of the CDF at point 
locations and the temporal variability. Spearman rank correlation coefficients 
between modeled and observed wind speeds at individual ASOS sites range 
from 0.21 to 0.58 (significantly different from zero at 99% confidence level). 
Wind climates exhibited equal fidelity during precipitation and no precipitation 
periods. 

o The overall Spearman rank correlation coefficient for wind power output time 
series derived from the Fitch wind farm parameterization in WRF and reported 
by the ERCOT grid is 0.52 which is significantly different from zero at the 99% 
confidence level according to a permutation test (Wilks 2020). When a period 
of wind speeds close to wind turbine cut-out is removed the Spearman 
correlation coefficient increases to 0.63. Fidelity in terms of power production 
is not only symptomatic of fidelity for hub-height wind speeds but is essential 
to understanding the power loss associated with use of erosion safe mode. 

The relatively short duration of the simulation precluded detailed investigation of the 
size of hail (MESH) and the joint occurrence of precipitation and power producing 
wind speeds. These issues were subsequently addressed in study 2. 
2.2 Study 2: Pryor et al. (2023). 
The second study (Pryor et al. 2023b) involved WRF simulations using a similar 
configuration to study 1 but covering a wider range of climates by sampling multiple 
months. It also employed many of the same evaluation datasets, methods and 
metrics. To avoid model drift, cold restarts with new initial conditions were 
implemented every 14 days with a 6-hour spin-up period. The entire paper is 
available in Appendix A. Thus, only a brief precis of key findings is given here: 

o The frequency of occurrence of hail as a function of wind speed is well 
represented in the WRF simulation. This is an important finding, and important 
to accuracy of erosion atlases, because the closing velocity between 
hydrometeors and the blade is highly non-linear with wind speed as is the 
material stress associated with hail impacts. 

o The WRF simulation overestimates the probability of occurrence of large 
MESH during the winter months (January and February) but underestimates 
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the probability of occurrence of large MESH in the transition and summer 
months. If found to be a generalizable, this finding has high relevance to 
assessment of the seasonality of coating damage due to hail impacts. A 
further inference is that testing of other microphysics schemes would have 
high value. 

o The simulated frequency of liquid precipitation (of any intensity) during 10-m 
wind speeds above 7 ms-1 exhibits a positive bias relative to RADAR-based 
observations close to each of the ASOS stations where wind speeds are 
measured. However, comparisons at the highly instrumented Department of 
Energy site at Lamont in Oklahoma indicated a negative bias in the 
occurrence of heavy precipitation at high wind speeds from WRF. The 
implication is that simulation fidelity with respect to these joint probabilities is 
highly spatially varying. Thus, any resulting erosion atlas would not be equally 
robust across space. Longer simulations would be useful in assessing 
whether this spatial variability across the precipitation gradient is persistent. 

2.3 Study 3: Pryor et al. (2024) and Zhou et al. (2024). 
The third study (Pryor et al. 2024; Zhou et al. 2024) (see Appendix B) involved 
conducting WRF simulations using a set-up similar to what would be employed in 
short-term (i.e. day-ahead) forecasting for wind power production (Jacondino et al. 
2021; Tuncar; Sağlam; Oral 2024). These simulations were performed for case 
studies of meteorological events that are likely to have been associated with large 
increments in accumulated distance to failure of blade coatings (i.e. deep 
convection, heavy precipitation, hail and wind speeds at close where wind turbine 
blades reach maximum rotational speed (Letson and Pryor 2023)) and were 
designed to determine how fidelity varied across simulations conducted with five 
different microphysical schemes. Key findings included: 

o Model fidelity, particularly with respect to cREF and precipitation rates, is 
higher for deep convection events with strong large-scale (synoptic) forcing. 
Additionally, differences between 24-hour accumulated precipitation and 
cREF from simulations with different microphysics schemes were more 
marked during meteorological conditions that have weaker synoptic forcing 
and hence local land conditions play a larger role in determining the location 
and intensity of deep convection. This has key importance to the relative 
ability to make reliable forecasts of erosive events as a function of season. 

o For the springtime event with strong synoptic forcing, the time evolution 
spatially averaged precipitation rates from the WRF ensemble members 
exhibit relatively good agreement with data from nine RADARs. However, all 
ensemble members overestimate the peak precipitation rates. The rate of hail 
fall is best reproduced in simulations with Milbrandt-Yau (Milbrandt and Yau 
2005a; Milbrandt and Yau 2005b) and Morrison (Morrison; Thompson; 
Tatarskii 2009) microphysics schemes. This might indicate that erosion 
atlases might be more robust when predicated on use of one of these two 
microphysics schemes. 

o Simulations of meteorological conditions with more locally-forced convection 
exhibit a positive bias in terms of total accumulated precipitation and the 
spatial occurrence of hail and graupel except for simulations with the Morrison 
microphysics scheme. This has key importance to the relative ability to make 
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reliable forecasts of erosive events as a function of season, since strong 
synoptic forcing is more frequent outside of the summer months (Zhou et al. 
2024). 

3. Key Conclusions/Recommendations 
Heavy rainfall and hail during convective events are challenging for numerical 
models to simulate in both space and time. For the wind turbine blade LEE 
application, fidelity is also required with respect to hail size and joint probabilities of 
wind speed and hydrometeor type and precipitation rates. This demands fidelity that 
is seldom evaluated and thus there is a need to develop robust V&V frameworks that 
focus on LEE applications. Research summarized herein presents the initial steps 
towards developing such frameworks. These studies also illustrate that WRF 
simulations performed at high spatial resolution (dx » 1-2 km) and with appropriate 
configuration settings exhibit fidelity for the marginal probabilities of wind speed, 
precipitation rate and hail occurrence. However, the fidelity with which the joint 
probabilities of these properties and the simulation of maximum size of hail is, as yet, 
not sufficient to characterize potential damage to wind turbine blade coatings.  
Our recommendations are: 
• Future research should develop and employ V&V frameworks that: 

• Focus on copula (joint) probability distributions of wind speed-precipitation 
rate.  

• Include explicit consideration of hail frequency/occurrence and size (where 
relevant).  

• Employ robust and appropriate statistical methods to assess skill. Use of  
Reliability Diagrams (Coburn and Pryor 2022; Coburn; Arnheim; Pryor 
2022) would yield important insights and extend beyond techniques 
described above for relative rare events. 

• Address the different needs of communities seeking to develop erosion 
atlases and those seeking to inform implementation of erosion safe mode 
operation. 

• Future research should also encapsulate a comprehensive assessment of fidelity 
as a function of model configuration across multiple climates and event ‘types’. 
The design of such experiments could usefully leverage and adapt that used 
within the New European Wind Atlas (NEWA) (Dörenkämper et al. 2020; 
Hahmann et al. 2020). 

These measures will advance our ability to make robust erosion atlases using NWP 
models and advance the case for short-term forecasting to be expanded to include 
information pertinent for erosion safe mode implementation. 
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ABSTRACT: The Southern Great Plains (SGP) region exhibits a relatively high frequency of periods with extremely high
rainfall rates (RR) and hail. Seven months of 2017 are simulated using the Weather Research and Forecasting (WRF)
Model applied at convection-permitting resolution with the Milbrandt–Yau microphysics scheme. Simulation fidelity is
evaluated, particularly during intense convective events, using data from ASOS stations, dual-polarization radar, and
gridded datasets and observations at the DOEAtmospheric Radiation Measurement site. The spatial gradients and tempo-
ral variability of precipitation and the cumulative density functions for both RR and wind speeds exhibit fidelity. Odds ra-
tios. 1 indicate that WRF is also skillful in simulating high composite reflectivity (cREF, used as a measure of widespread
convection) and RR . 5 mm h21 over the domain. Detailed analyses of the 10 days with highest spatial coverage of cREF
. 30 dBZ show spatially similar reflectivity fields and high RR in both radar data and WRF simulations. However, during
periods of high reflectivity, WRF exhibits a positive bias in terms of very high RR (.25 mm h21) and hail occurrence, and
during the summer and transition months, maximum hail size is underestimated. For some renewable energy applications,
fidelity is required with respect to the joint probabilities of wind speed and RR and/or hail. While partial fidelity is achieved
for the marginal probabilities, performance during events of critical importance to these energy applications is currently
not sufficient. Further research into optimal WRF configurations in support of potential damage quantification for these
applications is warranted.

SIGNIFICANCE STATEMENT: Heavy rainfall and hail during convective events are challenging for numerical
models to simulate in both space and time. For some applications, such as to estimate damage to wind turbine blades
and solar panels, fidelity is also required with respect to hail size and joint probabilities of wind speed and hydrometeor
type and rainfall rates (RR). This demands fidelity that is seldom evaluated. We show that, although this simulation ex-
hibits fidelity for the marginal probabilities of wind speed, RR, and hail occurrence, the joint probabilities of these
properties and the simulation of maximum size of hail are, as yet, not sufficient to characterize potential damage to
these renewable energy industries.

KEYWORDS: Convective storms/systems; Radars/radar observations; Numerical analysis/modeling;
Numerical weather prediction/forecasting; Renewable energy

1. Introduction

Organized convection is a major contributor to annual total
precipitation and a source of very high rainfall rates (RR),
hail, and high wind gusts over the Southern Great Plains (SGP)
of the United States (Fig. 1). Indeed, mesoscale convective sys-
tems (MCSs) contribute 30%–70% of precipitation received
during the warm season (defined as April to September) over a
region extending from the Rocky Mountains east to the Missis-
sippi River (Feng et al. 2019; Fritsch et al. 1986). The total accu-
mulated precipitation from mesoscale organized convection
during the 1982 warm season exceeded 30 cm over a vast swath
of northeastern Texas and eastern Oklahoma and thus contrib-
uted nearly 50% of total annual precipitation (Fritsch et al.
1986). A more recent analysis has shown MCSs generate
30%–70% of warm-season precipitation and up to one-half
of annual total precipitation over most of Texas and Oklahoma
(Feng et al. 2021). Within the SGP, MCSs are most frequent in
spring and are closely connected to the large-scale circulation

(Yang et al. 2017). MCSs during the spring and autumn
“commonly initiate under strong baroclinic forcing and favor-
able thermodynamic environments” and “feature both large
and deep convection, with a large stratiform rain area and high
volume of rainfall” (Feng et al. 2019). Conversely, summer
(June–August) “MCSs often initiate under weak baroclinic
forcing, featuring a high-pressure ridge with weak low-level
convergence acting on the warm, humid air associated with
the low-level jet” (Feng et al. 2019).

Over the continental United States, hail damage produces
approximately 60% of total annual property loss caused by se-
vere weather (Murillo and Homeyer 2019). Both observations
(e.g., estimates from the Global Precipitation Mission; Bang
and Cecil 2019; Fig. 1a) and simulations indicate that severe
hail occurs in the SGP on approximately 5% of all days (Prein
and Holland 2018; Trapp et al. 2019). According to one prior
study, parts of Oklahoma and Texas experience an average
of one severe hail day per year, which is defined as a day
with maximum estimated size of hail (MESH) above 29 mm
(Cintineo et al. 2012). The U.S. National Oceanic and Atmo-
spheric Administration (NOAA) documents “the occurrence
of storms and other significant weather phenomena havingCorresponding author: S. C. Pryor, sp2279@cornell.edu

DOI: 10.1175/JAMC-D-22-0090.1
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sufficient intensity to cause loss of life, injuries, significant prop-
erty damage, and/or disruption to commerce” at the county
level in the NOAA Storm Events Database (https://www.ncdc.
noaa.gov/stormevents/). According to data from the associated
NOAA Storm Reports for 2005–21, an average of over 2000
events described as “thunderstorms” or “hailstorms” occur in
Texas per year (Fig. 1b).

The fidelity with which numerical models reproduce or-
ganized convection and associated hydrometeors remains
comparatively poor even when regional models are applied
at convection-permitting spatial scales (Scaff et al. 2020).
Model fidelity is challenged by factors such as the complex-
ity of cloud microphysics processes (Morrison et al. 2020;
Tao et al. 2016) and strong, nonlinear atmosphere–surface
coupling (Dai et al. 2021; Feng et al. 2018). Hail occurrence,
number concentration, and diameter are particularly challeng-
ing to simulate (Adams-Selin et al. 2019; Gagne et al. 2017;
Snook et al. 2016). This is in part because hail production and

indeed the environmental conditions responsible for hail
generation and hail fall are still incompletely understood
(Davenport 2021; Kumjian and Lombardo 2020). For example,
even the 1D WRF-HAILCAST model, in which hail diameter
is projected from modeled cloud liquid- and solid-phase wa-
ter and vertical velocities, only achieved forecasts of hail
sizes within 12 mm of measurements two-thirds of the time
(Adams-Selin and Ziegler 2016).

Observational evidence suggests that the generation of cold
pools caused in part by downdrafts’ transport of cold, dry air
from the middle troposphere toward the surface tends to be
associated with precipitation rates . 2 mm h21 and is key to
the organization of multicell convection (Schlemmer and
Hohenegger 2014). Numerical simulations indicate a strong
positive association between the updraft and downdraft area
and cold-pool vertical extent and intensity (Marion and Trapp
2019), and that the ability of cold pools to initiate development
of further convective cells and organize convection is critically

FIG. 1. (a) Mean annual frequency of lightning strikes (2002–14) from the NLDN (Rudlosky
and Fuelberg 2010) mapped to 12-km resolution. Also shown is the annual frequency of hail
days derived from GPM data from 2014 to 2022 (contours). Note that these data have a spatial
resolution of 28. (b) Mean annual frequency (2005–21) of hailstorms and thunderstorms by state
from the NOAA Storm Reports (red shading). Also shown are the state-by-state IC of wind
energy (cyan) and solar (black; top 10 states only) as of the end of 2020 (American Clean Power
2021). The area of each dot is proportional to IC. Wind and solar installed capacities in Texas at
the end of 2020 were 5.3 (solar) and 33 (wind) GW. The light-gray boxes indicate the Southern
Great Plains and three domains used in the simulations with the WRF Model presented herein
(see details in Fig. 2).
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dependent on the cold-pool depth and advection speed
(Haerter et al. 2019). Previous research focused on the SGP
has found that the areal extent of stratiform precipitation asso-
ciated with midlatitude deep convection tends to be underesti-
mated in convection-permitting model simulations (i.e., with a
grid spacing Dx 5 1 km) performed with a wide array of micro-
physics schemes (Han et al. 2019). Conversely, simulations
tend to produce excessively intense updraft velocities and too
wide an area of high composite reflectivity (cREF . 45 dBZ;
Fan et al. 2017). Numerical simulation of precipitation, advec-
tion speeds, cold-pool characteristics, and cloud properties as-
sociated with convective systems are substantially improved
by use of so-called convection-permitting grid spacing and
thus a decrease of Dx from 12 to 4 km (Prein et al. 2021). MCS
updraft and downdraft widths were smaller, the updraft depth
was shallower, and the median updraft and downdraft veloci-
ties were slightly lower in simulations with Dx5 1 km, relative
to those with Dx 5 4 km (Prein et al. 2021). Decreasing
Dx from 4 km in simulations of MCSs led to improved repre-
sentation of the updraft and downdraft properties relative to
radar wind profiler observations in the SGP (Wang et al.
2020). Idealized simulations of individual thunderstorms also
indicate that grid spacing of 1 km led to improved representa-
tion of deep convective structures relative to simulations at
2 km (Verrelle et al. 2015). Additional previous research
found MCS simulation fidelity is enhanced by use of Dx 5 1
km rather than 3 km due largely to better representation of
the cold pool (Squitieri and Gallus 2020). Based on this re-
search, a grid spacing of 1.3 km is used here in the innermost
simulation domain.

There are clear societal needs with regard to high-fidelity
short-term forecasts and climate-scale simulations of deep
convection and the associated hazards. Specific to the SGP,
Dallas–Fort Worth, Texas, suffered $800 million in hail dam-
age in a single event in 2011 (Brown et al. 2015), and another
event in May 1995 caused $2 billion of damage and 109 inju-
ries (Edwards and Thompson 1998). The SGP is also charac-
terized by large wind and solar resources and deployments
(Figs. 1 and 2). Both exhibit vulnerability to damage from ex-
tremely heavy rainfall and hailstones associated with deep
convection (Letson et al. 2020a,b; Makarskas et al. 2021).
With respect to solar panels and both residential and commer-
cial properties, the primary source of damage derives from
kinetic energy transfer during hailstone impacts. Hence, the
hydroclimatic parameters of interest are the hailstone diame-
ter, mass, terminal fall velocity yt, and number (Brown et al.
2015; Makarskas et al. 2021). For wind turbines, the damage is
manifest as roughening of the wind turbine blade leading
edge. This leading-edge erosion (LEE) is also, to the first or-
der, the result of material stresses caused by kinetic energy
transfer from falling hydrometeors. In this case, however, the
closing velocity is dictated by both the hydrometeor yt and the
blade rotational speed. The linear speed of the blade tip is
zero at wind speeds below cut-in (when the wind turbine be-
gins to generate electrical power), rises rapidly as wind speed
increases, and then is constant at wind speeds above those
where power output is equal to the rated capacity of the wind
turbine (Fig. 3). Hydrometeor yt is lower than the wind tur-
bine tip speed and thus plays a secondary, but important, role
and is dictated by the diameter, phase, and density (Fig. 3).

FIG. 2. (a) Topography in the simulation domains and location of wind turbines based on the USGS wind turbine database (Hoen
et al. 2018), updated as of April 2022. (b) Locations of NWS ASOS and dual-polarization Doppler radar in domain d03 and the
DOE ARM site at Lamont. Also shown are the four subregions}NW, NE, SW, and SE}that are used to examine the spatial vari-
ability in atmospheric conditions.
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The number of hydrometeors, mass, and phase are complex
functions of cloud microphysics and environmental thermody-
namics. The number density of larger, more massive droplets
with higher yt increases rapidly with RR (Fig. 3).

Evidence that blade LEE may reduce annual electricity pro-
duction from wind turbines by an average of 1%–5% (Froese
2018) has spurred development of advanced methods for de-
tection (Du et al. 2020) and prevention/reduction by appli-
cation of protective tapes (Major et al. 2021) and/or use of
erosion-safe mode in wind farm control where the wind tur-
bine rotational speed is reduced during extreme hydrocli-
matic events (Hasager et al. 2021; Tilg et al. 2020). To
accurately project the relative cost–benefit of these actions
requires both accurate forecasts 1) of the total accumulated
kinetic energy that is likely to be transferred into the blades
during their lifetime (20–30 yr) and 2) short-term forecasts
of individual events that are likely to be highly erosive.
Making an assessment of the former relies on correct repre-
sentation of the marginal and joint probabilities of hub–
height wind speeds, rainfall rates, and also hail occurrence
and diameter (Letson et al. 2020a). For the latter, there is a
need for fidelity at the event level to permit costing of deci-
sions to slow the wind turbine blade rotation to reduce
blade material stresses from hydrometeor impacts that also
cause lost electricity production and revenue.

Previous research that estimated kinetic energy transfer to
operating wind turbines in different regions within the contig-
uous United States using data from dual-polarization Doppler

radar found particularly high values and hence LEE potential
in the SGP due to the prevalence of high wind speeds, heavy
rainfall, and hail (Letson et al. 2020a; Fig. 1a). Other atmo-
spheric phenomena are also associated with wind turbine
damage. These include lightning strikes that, like hail and
high RR, are also associated with deep convection and have a
relatively high frequency of occurrence in the SGP (Fig. 1a).
Specific to the SGP, previous analyses have suggested that, in a
location with an annual rate of 5–6 lightning strikes per kilome-
ter squared, about 5% of 1.5-MW wind turbines in a wind farm
experienced some level of lightning damage to their blades
(Katsaprakakis et al. 2021). While a range of lightning pro-
tective measures are available (International Electrotechnical
Commission 2019), lightning attachment to the tips of wind tur-
bine blades can result in delamination (70% of cases in the
SGP), debonding, and shell and/or tip detachment (Candela
Garolera et al. 2016). Degradation of aerodynamic performance
and uneven loading of the wind turbine is also associated with
ice accumulation during periods of freezing rain. A range of
mitigation measures can be deployed to reduce ice buildup
(Madi et al. 2019), but in environments with high freezing-rain
frequency and up to 3% of hours in a year exhibiting meteoro-
logical icing, annual electricity production can be reduced by up
to 5% (Pedersen et al. 2022). A substantial fraction of U.S.
National Weather Service (NWS) Automated Surface Observing
System (ASOS) stations include an icing sensor that permits
detection of freezing rain (Jones et al. 2004). Data from
ASOS stations within the primary study region considered here
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FIG. 3. (a) Wind turbine rotational speed [revolutions per minute (label RPM)], tip speed
(label Tip; m s21), and electrical power production (label P; MW) as a function of wind
speed for the International Energy Agency (IEA) 15-MW reference wind turbine (Gaertner
et al. 2020). This reference turbine represents typical characteristics of a wind turbine that
would generate 15 MW of electrical power under optimal wind conditions. Power production
begins at ;4 m s21 and ceases at hub-height wind speeds . 25 m s21. Thus, no RPM or tip-
speed data are plotted outside this range. (b) Illustrative terminal fall velocities for rain droplets

and hail computed using Vt,rain 5 k[(ro/rair)R]1/2 and Vt,hail 5 [(8/3)(|g|/CD)(ri/rair)R]1/2, where
R 5 droplet or hailstone radius (m), k 5 220 m1/2 s21, ro 5 air density at sea level (1.225 kg m23),
rair 5 air density at the droplet altitude (0.999ro), ri 5 density of ice (917 kg m23; Kumjian and
Lombardo 2020; Shpund et al. 2019), and CD 5 drag coefficient with a value of 0.55 (Stull 2017) or
0.5 (Kumjian and Lombardo 2020). (c) Mean droplet number density as a function of RR (see
legend) derived from the optical disdrometer deployed at the DOE ARM site at Lamont
(Fig. 2) based on 1-min observations from 2017 to 2021.
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(domain d03; Fig. 2a) indicate that, during 2017, freezing rain
was detected in an average of 0.08% of all 5-min periods. This
suggests icing is likely not a dominant source of lost electricity
production or increased wind turbine maintenance costs in the
SGP. Here, we focus on the meteorological drivers of LEE.

Here, we present a WRF simulation comprising seven
months during 2017. Our research objectives are to quantify
the degree to which the simulation performs the following:

1) The simulation generates a realistic representation of the
hydroclimate in terms of the frequency and intensity of
precipitation and the occurrence of hail and maximum es-
timated size of hail as derived from in situ and remote
sensing observations. Specifically, we test that our a priori
postulates that
• the positive bias in hail frequency and spatial extent
found in a previous WRF simulation of June–July 2014
for this model configuration and study domain (Letson
et al. 2020b), and also in a simulation also performed
with the Milbrandt–Yau microphysics scheme of a se-
vere hail event in Colorado (Labriola et al. 2019b), is
manifest in all seasons,

• model fidelity for these hydroclimate properties exhibits
marked seasonality due to variations in the spatial ex-
tent of convection and degree of coupling to the larger-
scale atmospheric environment (Feng et al. 2019), and

• while model-derived cREF accurately reproduces the
time evolution of radar-derived measurements, there is
positive bias in the spatial extent of cREF . 30 dBZ
(Fan et al. 2017).

2) The simulation exhibits skill for conditions during in-
tense convective events. For the 10 dates with greatest
spatial occurrence of composite reflectivity above 30 dBZ
(Nisi et al. 2018), we provide detailed assessments of model
skill, including hydrometeor type, and diagnose that skill
in the context of convective duration and dynamics.
Specifically, we test our a priori postulate that the WRF
simulation reproduces the domainwide precipitation ac-
cumulation as reported in a range of observational data-
sets during these dates despite excessively intense updraft
velocities and too wide an area of high composite reflectivity
(cREF. 45 dBZ; Fan et al. 2017).

3) The simulation reproduces the joint probability distri-
bution of hydroclimate parameters and wind speeds of
particular importance to the wind energy industry. Our
a priori postulate is that this simulation will, consistent
with past evaluations of WRF applied at convection-
permitting resolution over the SGP, exhibit substantial
skill for the marginal probabilities of key hydroclimate
parameters and wind speeds. However, we further pos-
tulate that the simulation of the joint probability distri-
butions represents a substantially more stringent test of
the model and will be less good especially in aspects criti-
cal to dictating wind turbine LEE. We further evaluate
whether this WRF simulation represents key spatial gra-
dients in the occurrence of highly erosive meteorological
events (i.e., co-occurrence of high wind speeds and heavy
rainfall/hail).

2. Data and methods

a. WRF simulation

The simulation presented herein is performed using WRF
(v3.8.1) with cold restarts every 14 days and a 6-h spinup pe-
riod. Triple-nested simulation domains are used (Fig. 2 and
Table 1). These domains are centered on a region with very
high wind energy penetration. The entire outermost domain
covers an area of 4.4 million km2 and is centered on northern
Texas. As of April 2022, this area contained almost 40 000
wind turbines with a cumulative installed capacity (IC) of
.75 GW (Hoen et al. 2018). This is over 60% of the current
total U.S. installed capacity (American Clean Power 2021).
Over 42 GW from a total of .22 000 wind turbines is located
within the innermost simulation domain (domain d03) that is
the focus of analyses presented herein.

Simulation fidelity for deep convection and related hazards
is generally improved by data assimilation (Segele et al. 2013;
Snook et al. 2016). Here, we do not perform data assimilation
since the goal of this work is to quantify inherent model skill.
We note that previous simulations performed without data as-
similation with the WRFModel at a grid spacing of 4 km indi-
cate realistic representation of structure and frequency of
precipitation associated with MCSs over the central United
States (Yang et al. 2017).

The simulation settings are selected to provide consistency
with a prior 25-day test simulation of summer conditions
(8 June–2 July 2014) over the SGP. That simulation exhibited
some degree of fidelity for key meteorological properties
(Letson et al. 2020b). Specifically, precipitation accumulation
and RR exhibit similar magnitudes and spatial patterns to
those inferred from radar and tipping-bucket rain gauges. The
spatial variability of near-surface wind speeds also exhibits
relatively close agreement with in situ measurements. The
mean odds ratio for hail prediction across 11 radar stations is
4.6, with a range of 0.89–10.46. However, a positive bias in
terms of hail frequency and spatial extent is evident. The
short duration of the simulation precluded evaluation of the
joint probabilities of hail or RR and wind speeds. As in that
work, and other recent regional simulations (Qiu et al. 2020;
Zscheischler et al. 2021), initial and lateral boundary condi-
tions (LBCs) for the simulation presented herein are provided
from the ERA-Interim reanalysis (Dee et al. 2011) and are
updated every 6 hours. Daily sea surface temperature data
are provided by the Real-Time Global SST dataset (Reynolds
and Chelton 2010). No nudging or data assimilation is applied.
One-way nesting is used. Output for parameters analyzed
herein is stored every 10 min.

The calendar year 2017 is selected based on analyses that
indicate that it is representative of typical radar hail climate in
the study region in terms of the seasonality and absolute num-
ber of hail reports in each calendar month (Fig. 4a). The origi-
nal intent had been to simulate the entire period from
January to September 2017 to sample months with varying
amounts of deep convection, RR, and hail frequency. How-
ever, even using 45 vertical layers and short time steps Dt led
to violations of the Courant–Friedrichs–Lewy (CFL) condi-
tion [CFL 5 c(Dt/Dz) # 1], where Dz 5 vertical grid spacing
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when high vertical velocities c are simulated (De Moura and
Kubrusly 2013). Tests showed a much smaller time step (Dt ;1 s
in the innermost domain) might allow simulation of April
and May, but limitations on computational resources pre-
cluded doing so.

The five falling hydrometeors treated in the Milbrandt–Yau
double-moment microphysics scheme are rain, ice, snow, grau-
pel, and hail (Milbrandt and Yau 2005). This scheme per-
formed relatively well in our prior evaluation (Letson et al.
2020b) and in terms of precipitation generation from a squall
line in the SGP but underestimated the highest RR (Fan et al.
2017). An ensemble of simulations with data assimilation and

this microphysics scheme also exhibited fidelity in terms of
hail occurrence and size for the supercell storms in the SGP
on 20 May 2013 (Snook et al. 2016). The microphysics pa-
rameters are used to derive estimated radar reflectivity (at
10-cm wavelength) as a diagnostic output variable using the
WRF “do_radar_ref51” namelist setting (Koch et al. 2005;
Min et al. 2015).

b. Datasets used in the model evaluation

Two datasets from the NWS ASOS network (Fig. 2) are
presented here. Sustained wind speeds at 10 m above
ground level (AGL) U10 (m s21) as measured using Vaisala,

TABLE 1. WRF simulation settings.

Model attribute Setting

Domain settings
Grid spacing and domain size Domain 1 (d01): 12 km (175 3 175 grid cells)

Domain 2 (d02): 4 km (322 3 322 grid cells)
Domain 3 (d03): 1.33 km (652 3 652 grid cells)

Vertical resolution 45 vertical levels up to 50 hPa
Model time step (s; sd01, d02, d03) 30, 10, 3.33

Model physics settings
Microphysics Milbrandt–Yau (Milbrandt and Yau 2005)
Longwave radiation RRTM (Mlawer et al. 1997)
Shortwave radiation Dudhia (Dudhia 1989)
Time between radiation calls 15 min
Surface layer Revised MM5 Monin–Obukhov scheme (Jiménez et al. 2012)
Land surface Noah land surface model (Niu et al. 2011)
No. of soil layers 4
No. of land categories 21 (MODIS)
Planetary boundary layer MYNN level 2.5 (called every time step; Nakanishi and Niino 2006)
Cumulus parameterization Kain–Fritsch (domain d01 only; called every 5 min; Kain 2004;

Kain and Fritsch 1993)
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Inc., 2D sonic anemometers and RR as sampled using a
Frise Engineering Co. heated tipping-bucket rain gauge.
These data are reported every 5 min and sampled at 10-min
intervals for use in the WRF evaluation.

Inferred radar reflectivity, precipitation type, and RR from
the WRF simulation are evaluated using nine NWS S-band
dual-polarization Doppler radars (WSR-88D; Fig. 2b). The
following data products from within 200 km of each radar sta-
tion are regridded onto the WRF grid within domain d03 and
sampled at a 10-min resolution:

1) reflectivity (dBZ) at six elevation angles (0.58–3.18),
2) cREF [dBZ; based on previous radar-based analyses that

have employed a cREF threshold of 30 dBZ as an index
of storm initiation (Nisi et al. 2018), we use this threshold
as an indicator of convective activity],

3) RR (mm h21) and total monthly precipitation accumula-
tion [the minimum RR identified by the WSR-88D rain-
fall algorithm is 0.2544 mm h21 (0.01 in. h21; Fulton et al.
1998); RR are reported in 16 classes (defined in inches
per hour) at 0, 2.54, 6.36, 12.7, 19.1, 25.4, 31.8 38.2, 44.5,
50.9, 63.6, 76.3, 102, 153, and 204 mm h21],

4) hail reports issued based on reflectivity, hydrometeor as-
pect ratio, vertically integrated liquid water content, and
altitude of the melting layer (Crum et al. 1998; NOAA
2017; Seo et al. 2015; Wallace et al. 2019; Witt et al. 1998)
[these reports include only the geographic centroid of the
cell in which hail is inferred and the maximum expected
hail size, which is the diameter that 75% of observed hail
diameters should fall below (Ortega 2018; Wendt and
Jirak 2021)], and

5) Hybrid hydrometeor classification (HHC; Park et al.
2009) [here, we present data on four of the HHC classes:
hail, graupel, snow, and rain; graupel is differentiated
from hail using a diameter threshold of 5 mm (American
Meteorological Society 2015)].

The radar hail reports do not include the geographic extent
of hail, and multiple studies have found spatial mismatches
between hail swaths inferred from radar and surface hail re-
ports due to melting between the radar detection height and
the ground, the complexity and possible errors in the hail de-
tection algorithm, and horizontal advection of hail stones
as they fall (Adams-Selin et al. 2019; Brook et al. 2021). Never-
theless, dual-polarization radar is widely considered to be the
best dataset for characterization of hail climates and to pro-
vide evaluation of numerical models (Murillo and Homeyer
2019). When comparing the spatial extent of hail from WRF
and radar, each radar hail report is assumed to cover an area
equal to 45 domain d03 grid cells or 76 km2. This scaling fac-
tor is based on 1) the median size of contiguous grid cells in
the WRF simulation with cREF . 40 dBZ, which has been
used as threshold for radar hail detection (Witt et al. 1998),
and 2) climatologies of hail production from southern France
that found a typical storm produces hail over a 6-km-wide
swath, has an average advection speed of 15 m s21, has a du-
ration of 14 min (yielding a distance of 13 km), and also gives
an areal extent of 76 km2 (Dessens 1986). This estimate is

naturally a first-order approximation, and we do not imply
that such an area would be simultaneously subject to hailfall
at the ground.

Many of the fidelity assessments for precipitation pre-
sented here use radar observations because it is available
with high temporal resolution (,10 min) and is available
over almost all of the domain. It also provides consistency
with other analyses that employ radar estimates of cREF,
reflectivity, and/or hail occurrence. Nevertheless, radar-derived
RR have a number of uncertainties associated with them.
Thus, we also use two gridded precipitation datasets: Inte-
grated Multi-satellitE Retrievals for the Global Precipi-
tation Measurement (GPM) mission (IMERG; Huffman
et al. 2020b). We use the multisatellite precipitation esti-
mate with gauge calibration}precipitationCal (Huffman
et al. 2020a). The data are archived at a 0.18 by 0.18 spatial
resolution and a 30-min temporal resolution and have units
of millimeters per hour. The IMERG data also have a qual-
ity assurance index (0–1) associated with each record, with
higher values indicating higher data quality (Huffman 2019;
Huffman et al. 2019a). The mean value of the data-quality
flag in grid cells where nonzero precipitation occurs during
the 10 days analyzed herein ranges from 0.41 (24 June) to
0.67 (29 March). Thus, based on preliminary guidance, these
data are treated as being of moderate quality. We also ana-
lyze the Stage IV NCEP/Environmental Modeling Center
(EMC) product that merges observations from 140 radars
and ;5500 rain gauges over the continental United States
(Lin and Mitchell 2005). It has a 4 km 3 4 km spatial resolu-
tion and hourly temporal resolution and has been used as a
reference against which other datasets are evaluated (Beck
et al. 2019).

The U.S. Department of Energy operates an Atmospheric
Radiation Measurement (ARM) hub within the SGP near La-
mont, Oklahoma (36.60728N, 297.48758E; Fig. 2b). At this
site an optical (Parsivel2) disdrometer (Bartholomew 2020;
Tokay et al. 2014) measures droplet counts in 32 classes and
also encodes the presence of hail using the WMO synoptic
present weather code 89. Wind speeds close to the mean wind
turbine hub height (90 m AGL) are measured using a Halo
Photonics Doppler lidar (Newsom and Krishnamurthy 2020).

c. Analysis methods and skill metrics

The seven simulated months are divided into three seasons.
Winter is defined as January and February and has a low hail
prevalence. Summer is defined as June, July, and August, has
the highest hail frequency (Fig. 4b), and lies within what is
frequently referenced as the “warm” season where convection
is frequent across the contiguous United States (Goines and
Kennedy 2018). A transition season is defined as March and
September. Both months have a moderate frequency of hail
reports. These definitions are also largely consistent with the
seasonality of environmental contexts/spatial extents of MCS
that is described above (Feng et al. 2019).

Four subregions within domain d03 (Fig. 2b) are used to ex-
amine the degree to which the WRF simulation captures spa-
tial gradients in the wind and hydroclimate. These subregions
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are each 260 km by 260 km square and are located in the cen-
ter of the four quadrants of domain d03. Observational data
from these subregions illustrate marked west–east gradients
of precipitation (Sun et al. 2016). For example, the mean an-
nual total precipitation at the four ASOS stations closest to
the center of the subregions computed for 2005–21 is 480, 764,
379, and 932 mm for northwest (NW), northeast (NE), south-
west (SW), and southeast (SE), respectively. The wind re-
source and mean wind speed exhibit a northwest-to-southeast
gradient across domain d03, with localized enhancement
along the coast (Pryor et al. 2020). For example, the mean an-
nual frequencies of wind speeds at 10 m AGL greater than
10 m s21 at those same ASOS stations are 7.8%, 5.1%, 3.4%,
and 1.4%, respectively. The number of wind turbines and to-
tal installed capacity (April 2022) of wind turbines in these
subregions of domain d03 are .2600 and .5 GW for NW,
.2100 and .3.9 GW for NE, 5809 and .10 GW for SW, and
680 and.1.2 GW for SE.

Simulation fidelity assessment focuses on four core aspects:

1) The first aspect is climatology and marginal probability
distributions of key parameters. Spatial maps of seasonal
total precipitation and cumulative density functions
(CDFs) of RR and MESH from WRF are compared with
estimates from radar while CDF of wind speeds are com-
pared with those from ASOS. These assessments are per-
formed domainwide and in the four subregions. Rank
(Spearman) correlation coefficients are used in the evalu-
ation because these variables are not Gaussian distributed
(Wilks 2020).

2) Another aspect is forecast accuracy. Time series of domain-
wide occurrence of high cREF and RR are used to assess
temporal fidelity and to identify 10 days with widespread
deep convection. Some analyses employ metrics based on
contingency tables of categorical events in each 10-min
period: i) occurrence of hail, i.e., any hail accumulation in
WRF or one or more hail reports from radar; ii) deep con-
vection where cREF . 30 dBZ covers 5% or more of d03
in either the radar mapped to the WRF grid or in the WRF
simulation output; and iii) RR . 5 mm h21 over 5% or
more of domain d03. In these cases, model skill is summa-
rized using hit rate

H 5
a

a 1 c
; (1)

false alarm rate

F 5
b

b 1 d
; (2)

and odds ratio (Stephenson 2000)

u 5
H

1 2 H

/
F

1 2 F
; (3)

where a is the number of correct forecasts, b is the num-
ber of event forecasts when none occurred, c is the events
that occurred but are not forecast, and d is correct nega-
tives, respectively. The odds ratio is the “odds of making

a good forecast (a hit) to the odds of making a bad forecast
(a false alarm)” (Stephenson 2000). The term u 5 1 indi-
cates independence of forecasts and observations, whereas
u values . 1 reflect increased association and increasing
forecast skill. Confidence intervals are derived for the natu-
ral logarithm of u because it more closely approximates a
Gaussian distribution (Agresti 2018) as

ln(u) 6 za/2 3 SE; (4)

where za/2 is the value drawn from a z distribution at a
confidence level specified by a (1.96 for 95% confidence
level and 1.64 for 90% confidence level) and SE is the
standard error that is computed from the contingency
table values (a, b, c, and d) as

SE 5

��������������������
1
a
1

1
b
1

1
c
1

1
d

√
: (5)

3) Another aspect is intense events. The 10 dates with
highest coverage of radar-derived cREF . 30 dBZ
(Fig. 5h) are (listed in descending order of the spatial cov-
erage) 29 March, 14 February, 20 February, 15 January,
24 June, 16 January, 4 July, 6 August, 26 September, and
7 August. For these 10 days we analyze the relative spatial
coverage of high RR and reflectivity, examine hydrome-
teor type, and provide cross-sectional transects through re-
gions with high reflectivity.

4) The final aspect is the joint probabilities of wind speed,
RR, and hail occurrence.

Analyses presented here use different RR thresholds.
RR . 0 mm h21 is the natural definition, but even when models
are applied at convection-permitting scales the excess drizzle
problem is not entirely removed (Meredith et al. 2020). The
1 mm h21 threshold is the American Meteorological Society
definition of the highest RR associated with drizzle, which is
defined as comprising precipitation with droplet diameters of
,0.5 mm (Huschke 1959). A threshold of 5 mm h21 is defined
as heavy rainfall by the U.S. Geological Survey. A RR of
5 mm h21 is also approximately the midpoint of the World
Meteorological Organization definition of moderate rainfall,
which is defined as RR of 2.5–10 mm h21 sustained for 3 min.

Joint probability distributions are computed for the ARM
site using the disdrometer and wind speeds at 90 m AGL and
WRF output for the grid cell containing Lamont as well as out-
put for all of domain d03 and subregions therein. These latter
analyses use wind speeds at 10 m AGL from ASOS and RR
from radar versus WRF output. In these analyses RR classes
are chosen to emphasize the heaviest rainfall events. Thus, the
RR classes are .0–5 mm h21, and in 10 mm h21 the classes are
centered on 10, 20, 30, 40, and 50 mm h21. These are defined
based, in part, on analyses of disdrometer data from the ARM
site (2017–21). Of the 2 436497 one-minute data records,
102899 (;4%) indicate the presence of precipitation. For RR
of 0–5, 5–15, 15–25, 25–35, 35–45, and 45–55 mm h21, the mean
number density of rain droplets in a diameter D class centered
at 3.75 mm is 0.172, 1.53, 3.99, 7.46, 11.0, and 12.6 m23 mm21,
respectively (Fig. 3c). There are 457 occurrences of hail, and
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consistent with past research, for hydrometeor D . 4 mm, the
number density of hailstones (when they occur) actually ex-
ceeds that of rain droplets. For a RR of 25–35 mm h21 and
D centered at 5.5 mm, the mean number density of hail is
2.26 m23 mm21 whereas for rain droplets it is 0.633 m23 mm21.

The wind speeds at 10 m AGL are discretized into five classes:
0–2, 2–5, 5–7, 7–15, and.15 m s21. Assuming a power-law rela-
tionship for wind speed dependence on height and a power-law
exponent of 1/7, these classes correspond to the following condi-
tions at the hub height. Class 1 (0–2 m s21) indicates wind

FIG. 5. Mean monthly number of 10-min periods with cREF . 30 dBZ in each season from (a)–(c) WRF and (d)–(f) radar in each do-
main d03 grid cell, and time series of the number of d03 cells with cREF . 30 dBZ from (g) WRF and (h) radar. The ten 24-h periods
with highest total number of cells with cREF. 30 dBZ are denoted by the gray background in (h). (i)–(t) Spatiotemporal CDFs of cREF
from WRF and radar for each subdomain (see Fig. 2) in each season (wint 5 January and February, trans 5 March and September,
sum 5 June, July, and August). These CDFs include all 10-min periods in all grid cells with cREF . 0. Data reported from radar are
categorical, whereas those fromWRF are continuous.
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speeds below cut in, when the wind turbine rotor is unlikely to
be turning. Class 2 indicates wind turbine blade rotation at a
low and fairly constant speed. Class 3 covers the transition to
the rated power and attainment of the highest (and constant)
rotational speed (class 4). Class 5 defines wind speeds closest
to or above cutout wind speeds. The joint probability distribu-
tions are built using a 30-km radius around each ASOS station
in which the empirical estimates use the ASOS wind speed
during each 10-min period and the spatial radar-derived RR
within that same radius. The WRF output is sampled in these
same areas.

3. Results

a. Spatiotemporal variability of cREF, precipitation, hail,
and wind speeds metrics

There are many sources of error in the WRF-derived equiv-
alent radar reflectivity, and direct comparability to radar re-
flectivity is not expected (Koch et al. 2005). Nevertheless, the
Spearman rank correlation between the time series of the spa-
tial extent of modeled and radar-derived cREF . 30 dBZ is
0.79 (Figs. 5g,h). It is noteworthy that the spatial extent of
grid cells with a high frequency of cREF . 30 dBZ in each
season and the frequency with which large areas of domain
d03 are simultaneously covered by cREF . 30 dBZ are
substantially higher from WRF than in radar observations
(Fig. 5). This overestimation is most marked in the summer
months (cf. Figs. 5c,f) but is consistent through the entire
simulation (Figs. 5g,h). The positive bias in the frequency
with which high cREF is simulated is also manifest in all
subregions of domain d03 (cf. Figs. 5a–f,m–t). The positive
bias in the occurrence of cREF . 30 dBZ is consistent with
previous research that has shown for a relatively wide array
of model configurations WRF, when applied at convection-
permitting scales and without data assimilation, tends to
generate too wide of a region of moderate-to-high inferred
cREF (Fan et al. 2017; Han et al. 2019; Tao et al. 2016).
Despite the positive bias in the frequency of cREF . 30 dBZ,
closer agreement is found for the spatial patterns of
monthly mean total precipitation in each season and the
time series of domainwide mean RR (Figs. 6a–h). The CDF
plots for the subregions of domain d03 also exhibit a high
degree for results from WRF and radar (Figs. 6i–t). The re-
gion of very high precipitation in the WRF output for the
southeast of domain d03 during summer (cf. Figs. 6c,e) is
due almost entirely to the northern displacement of Hurri-
cane Harvey. Hurricane Harvey made landfall 25 August 2017
and between 25 and 30 August yielded rainfall totals along
the coast of southern Texas in excess of 1000 mm and of over
750 mm in Houston, Texas (van Oldenborgh et al. 2017). The
enhanced northern penetration of Hurricane Harvey in this
simulation led to substantial (excess) precipitation in the
southeast corner of domain d03.

The Spearman rank correlation coefficient r between the
time series of 10-min domain d03 mean RR from WRF and
radar is 0.67 (Figs. 6g,h). However, the simulation generates
nonzero RR too frequently. Nonzero RR are reported in over

13% of the total sample of all grid cells and all 10-min time
periods in WRF, but only 1.2% of radar estimates. If the
sample of RR . 5 mm h21 is collected in space (i.e., each
grid cell) and time (each 10-min period) from WRF for
domain d03 and each of the four subregions of domain d03,
much better agreement is found. The probability of occur-
rence of RR . 5 mm h21 in domain d03 is 0.42% in radar
and 0.38% in WRF output. The ratio of the marginal proba-
bility of occurrence of RR . 5 mm h21 from WRF to that
from radar in grid cells within the four subregions of domain
d03 ranges from 0.8 to 1.5. Consistent with some past research
(Kendon et al. 2021), there is also evidence that very heavy
rainfall is simulated too frequently relative to radar (Fig. 6),
particularly in the subregions NE and SE. This leads to a posi-
tive bias in mean monthly precipitation totals and higher do-
mainwide mean RR during the 10 days with highest spatial
coverage of cREF . 30 dBZ (Fig. 6), which is discussed in
more detail below.

Hail is considerably less frequent in the winter than summer
in both radar and WRF. For example, one or more hail cells
are identified from radar data in 24 10-min periods in the NW
subregion and 66 in the SE subregion during January and
February. During the three summer months, radar-derived
hail cells are identified in these subregions in 544 and 402
10-min periods. The overall probability of hail occurrence (i.e.,
nonzero hail accumulation) sampled in space and time in
WRF simulations is 3–5 times that from radar even after scal-
ing the radar observations by a factor of 45. This positive bias
is largest in the NW subregion, where the WRF simulations
exhibit nonzero hailfall in 1% of the spatiotemporal sample
(i.e., all 10-min periods sampled in all grid cells), while the
scaled radar data indicate a frequency ;0.2%. The bias in hail
frequency is smallest in the SE subregion, where the probabil-
ity fromWRF is 0.33% and that from scaled radar is 0.11%.

Radar-derived hail properties including MESH have been
previously evaluated (Cintineo et al. 2012; Murillo and
Homeyer 2019; Ortega 2018). Specific to the current study
region, one analysis of radar-derived hail occurrence and
MESH found higher implied frequency of hail from radar in
west Texas than is manifest in observer reports, which was
largely ascribed to deficiencies in the observer-based analy-
sis (Cintineo et al. 2012). A further study over the contigu-
ous United States found a statistically significant, positive
relationship between the daily number of severe hail ob-
server-based reports and the area with radar-based nonzero
MESH (Schlie et al. 2019). The synthesis of comparisons of
the current WRF simulation with radar in terms of the over-
all probability of occurrence and MESH (Fig. 7) is that hail
is present in the simulation too frequently but that during
the transition and summer seasons the relative frequency of
large hail (MESH . 25 mm) is higher in the radar observa-
tions (Figs. 7i–l). This is consistent with previous research that
has indicated the Milbrandt–Yau microphysics scheme gener-
ated MESH estimates on the lower end of those from WRF
microphysics schemes for a severe hail event in Colorado
(Labriola et al. 2019a). Analyses of the joint probability ofMESH
from radar and WRF (Fig. 8) also indicate that in time periods
and grid cells where both indicate the presence of hail, WRF
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simulations overestimate the probability of occurrence of large
MESH during January and February and underestimate the
probability of occurrence of large MESH in the transition
and summer months.

Odds ratios for categorical forecasts of hail occurrence,
and cREF . 30 dBZ or RR . 5 mm h21 over at least 5% of
domain d03 indicate that the WRF simulation is highly

skillful (Fig. 9). Ratio u is greater than 1 for all seasons and
all subregions of domain d03 and none of the 95% confi-
dence intervals on ln(u) intersect zero. Forecast skill, mea-
sured by both the absolute magnitude of u and the ratio of
the width of the confidence interval on u (du) computed
from Eq. (4) to the value of u (i.e., du/u) is consistently
lowest (smallest value of u and du/u) in summer, although

FIG. 6. Mean monthly total accumulated precipitation in each season from (a)–(c) WRF and (d)–(f) radar in each domain d03 grid cell,
and time series of 10-min RRs from (g) WRF and (h) radar. (i)–(t) Spatiotemporal CDFs of RR from WRF and radar for each subregion
(see Fig. 2) in each season (wint5 January and February, trans5 March and September, sum5 June, July, and August). These CDFs in-
clude all 10-min periods in all grid cells with RR. 0. Data reported from radar are categorical, whereas those fromWRF are continuous.
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the number of 10-min periods that meet the criteria of
an event is higher in summer. For example, in subregion
NW the total number of radar-detected hail events is 544
[a (hits) 5 428 1 c (misses) 5 116] as compared with 24 in
winter and 153 in the transition months. Both hail frequency

and model skill in forecasting hail occurrence also exhibit
spatial variability. In the NW subregion the radar observa-
tions indicate evidence for hail in radar data on 746 of all
10-min periods, while WRF indicates nonzero hail accumu-
lation on 1709 10-min periods. In the SE, 536 and 956
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FIG. 7. (a)–(l) Spatiotemporal CDFs of MESH from WRF and radar. CDFs of MESH are for all 10-min periods when hail is present.
MESH from radar is categorical. (m)–(x) Wind speeds at 10 m AGL U10 from WRF and ASOS for each subregion in each season. Gray
lines in (m)–(x) show individual ASOS stations (ASOS ind), and blue lines show the mean for all ASOS stations (ASOS all) in each subre-
gion (Fig. 2). Red dotted lines showU10 fromWRF output in all ASOS-containing cells.

FIG. 8. Joint distributions of MESH from WRF and radar during all 10-min periods and locations (grid cells) when hail is present in
both datasets. The white dotted line y5 x is included to facilitate comparison. Note that the frequency of occurrence of the joint classes of
MESH from WRF and radar is shown on a logarithmic scale, and the scale is truncated at 100 to aid legibility. The discretization used for
the radar and WRFMESH estimates reflects the unique values found in each dataset.
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10-min periods fulfill these conditions. Accordingly, u is higher
for the SE than NW for the transition and summer months.

WRF-derived near-surface wind speeds exhibit a strong
dependence on model configuration (particularly PBL and sur-
face schemes; Hahmann et al. 2020) but generally exhibit fidel-
ity in areas of flat terrain (Hahmann et al. 2020; Hawbecker
et al. 2017; Letson et al. 2020b; Pryor and Hahmann 2019).
Comparisons of wind speeds from WRF and ASOS are sub-
ject to a number of important caveats. Sustained 2-min
mean wind speeds as reported by ASOS sonic anemometers
are rounded up to the nearest knot and values below 3 kt
(1.543 m s21) are recorded as “calm” or 0 m s21. Con-
versely, the WRF values are for the model time step and are
spatial averages. With these caveats, the current simulations

reproduce the wind climate seasonality. Consistent with
ASOS wind speed observations and the observed seasonal
pattern of wind turbine power production (Pryor et al. 2020),
wind speeds from WRF are lowest in the summer months.
Spearman r of 10-m wind speeds from ASOS and WRF (sam-
pled at ASOS stations) are highest in the winter and transition
season months (r . 0.5 in all seasons) and the ratios of the
temporal standard deviations are close to 1. The simulations
also reproduce key aspects of the U10 probability distribution
from ASOS stations in the different subregions of domain d03
(Figs. 7m–x).

b. Days with large spatial coverage of high cREF

The 10 days with highest spatial coverage of cREF . 30 dBZ
(Figs. 5g,h) exhibit high precipitation accumulation from both
WRF and radar (Figs. 6g,h). Evaluation relative to point ob-
servations is plagued by a double penalty (for displacement in
time and/or space; Prein et al. 2013). Thus, here we focus prin-
cipally on domainwide precipitation over the entire day. Con-
sistent with the other analyses presented above, the 24-h
precipitation accumulation from WRF exceeds those from
radar on 8 of the 10 days (Fig. 10). The ratios of mean d03
precipitation accumulation from radar to WRF range from
0.26 (4 July) and 0.41 (24 June) to 2.35 (14 February) and
2.76 (16 January).

WRF underestimates both the mean 24-h total precipita-
tion as sampled for grid cells containing ASOS stations and
spatial variability (Fig. 10a). These observations also em-
phasize that these 10 days are associated with very high lo-
calized precipitation of up to 100 mm in a 24-h period at
some ASOS stations. WRF output exhibits reasonable ac-
cord with the total domain-d03 mean 24-h precipitation
from radar, IMERG, and Stage IV for these dates. Applying
a threshold of 0.25 mm as “measurable” daily accumulated
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precipitation (Arguez et al. 2012), data from radar indicate
the spatial coverage of domain d03 with nonzero precipita-
tion on these 10 dates (listed as in Fig. 10b) is 77%, 60%,
50%, 59% (15 January), 40%, 60%, 53% (4 July), 38%,
46%, and 43%. Comparable values from the WRF output
are 84%, 95%, 70%, 90% (15 January), 38%, 78%, 23%
(4 July), 73%, 70%, and 61% of domain d03. The Spearman
r between WRF and radar of domainwide precipitation re-
ceived on these dates is 0.53. Substantial precipitation is
also indicated on these dates by the other observational
datasets (Fig. 10). For example, the spatial coverage of daily
accumulated precipitation above 0.25 mm within domain
d03 from IMERG ranges from 91% (29 March) to 51%
(24 June), and the domainwide mean 24-h total precipita-
tion again from IMERG ranges from 7.6 (26 September) to
22.8 mm (29 March).

The WRF output exhibits closer accord with IMERG in
terms of total precipitation accumulation than with Stage IV.
The slopes and intercept values of linear fits (y 5 mx 1 c,
where x is the observation and y is WRF) to the daily mean
total precipitation accumulation shown in Fig. 10b yield
values of m 5 1.17 and c 5 23.2 (IMERG), m 5 1.74 and
c 521.22 (radar), andm5 1.68 and c5 211.66 (Stage IV).

Analyses of model output for 3 of the 10 dates (29 March,
24 June, and 16 January) with highest spatial coverage of
cREF . 30 dBZ illustrate the following: first, in both radar
and WRF more spatially extensive areas of high reflectivity
and precipitation are present in events during the transition
season and winter (Fig. 11). Second, consistent with past
research, these case studies indicate WRF simulates a wider
swath of high cREF (.40 dBZ or .30 dBZ) and a narrower
stratiform area (Fan et al. 2017; Fig. 11). Nevertheless, the
spatial extent of nonzero precipitation at the time of maxi-
mum spatial extent of cREF . 30 dBZ is relatively well
reproduced. Third, transects through a line of organized
convection as indicated by radar and simulated with WRF
exhibit important similarities in terms of the vertical extent
of high reflectivity for 29 March and 24 June, but the tran-
sect for 16 January exhibits a greater depth of high reflectiv-
ity than is evident in the radar data, and the simulated
vertical velocities from WRF within this region are much
higher than in the other two cases (Fig. 11). These transects
also illustrate the presence in the WRF Model output of
horizontally limited intense updraft cores associated with
high inferred reflectivity in the upper model levels. Last,
hail production in WRF is frequently associated with infor-
mation in the radar HHC that indicates either the presence
of hail or either graupel and/or snow (Fig. 12). Thus, while
hailfall at the ground appears to be oversimulated, radar
data are consistent with the presence of solid hydrometeors
in the clouds.

The excess presence of solid hydrometeors (hail and graupel;
Figs. 12c,f,i,l) and the excess duration of deep convective (and
nonzero precipitation; cf. Figs. 12c,f) in the current simulation
of 16 January may also be linked to the very high modeled
vertical velocities (Fig. 11o), excess vertical cloud devel-
opment (as manifest in the vertical extent of high radar re-
flectivity; cf. Figs. 11i,l), and possible feedbacks from the

resulting cold pool (see discussion in section 1). Simulations
of a squall line that occurred on 20 May 2011 during the
MC3E experiment found evidence for excess vertical extent
of REF . 30 dBZ and positive bias in vertical velocities in
simulations with all of the eight microphysics schemes tested
(Fan et al. 2017). Of particular relevance to the current
work, the bias in updraft velocities was particularly marked
in simulations of the Milbrandt–Yau microphysics scheme,
although the vertical extent of REF . 30 dBZ was not par-
ticularly marked in the simulation with the Milbrandt–Yau
microphysics scheme (Fan et al. 2017).

c. Joint probabilities of wind speeds, rainfall rates, and
hail occurrence

The fidelity assessment summarized above implies the
WRF simulation exhibits skill in reproducing the marginal
probabilities and spatial variability of wind speeds, RR and
hail, and aspects of individual convective events. For appli-
cations to wind turbine blade LEE, these are necessary pre-
requisites for damage assessment but insufficient to ensure
accuracy of such assessments. The demand for fidelity in
both wind speed and precipitation type (hydrometeor)/RR
and specifically the co-occurrence of high RR and wind
speed provides an extremely stringent challenge for atmo-
spheric models. Performance in this context is described
below.

Datasets collected at the DOE ARM facility allow a
pointwise evaluation of WRF, but for some of the simula-
tion period the disdrometer and/or wind profiler were not
operational (e.g., January and February). This low data vol-
ume and bias toward sampling the warm-season months,
plus the challenges in comparing point observations of wind
speed and RR, limit detailed interpretation. Nevertheless,
the WRF simulation appears to underestimate the relative
frequency of very high RR at this site. At this location, as in
most of domain d03, WRF rains too often but at relatively
low RR; RR . 45 mm h21 are observed by the disdrometers
on ;0.5% of all periods with RR . 0 mm h21 but only 0.04%
of WRF output from that grid cell when precipitation is sim-
ulated (Fig. 13). The compensating bias in precipitation fre-
quency means the absolute frequency of RR . 45 mm h21

is within a factor of 2 of the observations. There is a positive
bias in simulated wind speeds at/near wind turbine hub
heights during periods of precipitation (Fig. 13). Wind
speeds at hub height exceed 10 m s21 in lidar observations
in ,6% of periods with RR . 0, while this threshold is
exceeded in .13% of WRF output during periods with
precipitation. Such biases will offset each other in terms
of inferred total kinetic energy transferred to rotating
wind turbine blades. The negative bias in high RR will
lead to a negative bias in the number, size, and yt from the
most erosive hydrometeors, but the positive bias in wind
speed at wind turbine hub height means there will be a pos-
itive bias in blade rotational speed and thus the closing
velocity.

For the domainwide and subregional analyses, the rela-
tive frequency of occurrence of hail in each U10 class is
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well represented in the WRF simulation, while the relative
frequency of liquid precipitation (of any intensity) for
U10 . 7 m s21 exhibits a positive bias relative to radar-
based observations within 30 km of each ASOS station
(Fig. 14). This subsampling yields the finding that 2.8%
of periods when precipitation is observed are associated

with RR . 25 mm h21 and wind speeds at which the wind
turbine blades would be rotating, while the comparable value
from WRF is 3.8%. Considering wind speeds where the
wind turbine blades would likely be at their maximum rota-
tional speed U10 (7–15 m s21), RR . 25 mm h21 are almost
2 times as frequent in the WRF output. This comparison,

FIG. 11. The cREF from (a)–(c) radar and (d)–(f) WRF during example 10-min periods on 29 Mar, 24 Jun, and 16 Jan. Also shown
by the white outlines and shading are areas where precipitation is occurring. Vertical profiles of reflectivity from (g)–(i) radar (from
the elevation scans at 0.58, 0.98, 1.38, 1.88, 2.48, and 3.18) and (j)–(l) WRF, along with (m)–(o) vertical wind speed w and height of the
melting layer from WRF, along the transects shown by the black lines in (a)–(f).
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in contrast to pointwise analyses at the ARM facility, im-
plies kinetic energy transfer to the blades from liquid hydro-
meteor impacts is likely to be overestimated if calculated
from the WRF simulation output. Both the WRF simulation
and the radar estimate of hail occurrence also indicates that
a substantial fraction of the time when hail is indicated also
occurs during periods when the wind turbine would be ro-
tating (Fig. 14), and further, nearly 30% of all hail events

are associated with wind speeds at which the wind turbine
blades are rotating at, or close to, their maximum speed
(i.e., U10 . 7 m s21). Hail impacts are thought to be asso-
ciated with higher kinetic energy transfer and material
stresses due to the hardness and relatively large diameter of
the hydrometeors (Keegan et al. 2013).

When the four subregions of domain d03 are considered,
the joint probabilities of U10 and RR and the occurrence

FIG. 12. Hydrometeor classes during 29 Mar, 24 Jun, and 16 Jan: time series of the number of domain d03 cells with each precipi-
tation type from (a)–(c) radar and (d)–(f) WRF, and maps for the time of most widespread precipitation from radar, showing output
from (g)–(i) radar and (j)–(l) WRF. Radar hydrometeor classes are consolidated from 10 to 4 to match the WRF hydrometeor clas-
ses. “Trace” precipitation from WRF is shown for any cell with RR , 0.15 mm h21.
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of hail in different wind speed classes are relatively well
reproduced. However, the WRF simulation output fails to re-
produce the clear west–east gradient in the co-occurrence of
high U10 and high RR evident in observations from the four

subdomains (Fig. 15). Closer accord is found for NW and SW
subdomains, but in the two eastern subregions, the occurrence
of all RR in the U10 class 7–15 m s21 is substantially
overestimated.
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along with the fraction of total rain and hail events associated with eachU10 class, shown in blue and red, respectively.
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4. Summary and concluding remarks

Accurate simulation of hydroclimate conditions even in
convection-permitting regional climate simulations is ex-
tremely challenging. Further, objective assessment of such
simulations, particularly for hail occurrence and size, is not
aided by the relative paucity of direct observations and the as-
sumptions implicit in deriving hail estimates from radar. Nev-
ertheless, the WRF simulation presented herein is shown to
exhibit fidelity in important aspects of the hydroclimate. Re-
turning to our original objectives, we show that the marginal
probabilities and spatial patterns of RR and wind speeds ex-
hibit close accord with radar and gridded datasets and in situ
observations. Further, the odds ratios of hail occurrence and
high RR are indicative of simulation skill at the event level,
even in the absence of data assimilation or nudging. Consis-
tent with our a priori expectations, there is clear positive bias
in the spatial extent of high composite reflectivity and model
fidelity for hail occurrence, and size is lowest in the summer
months. Case study analyses of high spatial extent of cREF
and precipitation equally indicate credibility with respect to
the vertical structure of deep convection and the presence of
solid-phase hydrometeors in clouds. They also provide pre-
liminary evidence that the excess production of hail in the
simulation is due to a combination of deep convection that is
too intense during the cold season and possible misallocation
of hydrometeors between the six classes treated by the micro-
physics scheme.

Application of WRF to generate a priori estimates of wind
turbine blade LEE or to enable an erosion-safe operational
mode represents both a critical research need as society
makes a transition to a lower-carbon energy supply and an
opportunity to consider more holistically model skill. Despite
the positive aspects of the simulation fidelity assessment de-
scribed above, these are not sufficient to ensure skill in the
joint probabilities of hail occurrence or high RR with wind
speed, particularly in comparisons for specific subregions of

the simulation domain and in pointwise comparison at the
DOE SGP ARM site. For example, while this 7-month WRF
simulation captures some of the spatial variability in these
joint probabilities, this simulation underestimates the west–
east gradient in the co-occurrence of high wind speeds, when
wind turbine tip speeds are maximized and RR. 25 mm h21.

Because of the high computational burden of simulations
such as those presented herein, only selected months from a
representative year in terms of the radar-derived hail climate
are considered. Quantification of the degree to which model
fidelity assessments presented herein are generalizable re-
quires simulation of multiple complete years to allow sam-
pling of a wide range of meteorological conditions and
environmental contexts for deep convection. Future work
should also evaluate whether different model formulations
and advanced/improved microphysics schemes can achieve
higher skill in terms of the joint probabilities of intense pre-
cipitation and high wind speeds. Development of such a large
model ensemble should also include alternative sources of the
LBC (e.g., ERA5; Hersbach et al. 2020). Improved assess-
ment of modeling capability and relative performance of dif-
ferent ensemble members is key to the development of
recommended best practice, prioritizing areas for model im-
provement, and would greatly benefit the growing renewable
energy community in the Southern Great Plains and beyond.
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FIG. 15. As in Fig. 14, but from (a),(c),(e),(g) observations and (b),(d),(f),(h) WRF for each of the subregions of domain d03.
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set is available from https://data.eol.ucar.edu/dataset/21.093. The
IMERG dataset is available from https://disc.gsfc.nasa.gov
(Huffman et al. 2019b). Data were obtained from the Atmo-
spheric Radiation Measurement (ARM) User Facility, a DOE
Office of Science User Facility managed by the Biological and
Environmental Research Program [for laser disdrometer data
and wind speed data see Wang et al. (2016) and Shippert
et al. (2010), respectively]. NEXRAD radar data are avail-
able from https://www.ncei.noaa.gov/products/radar/next-
generation-weather-radar. NWS ASOS data are available
from ftp://ftp.ncdc.noaa.gov/pub/data/asos-fivemin/. The
NOAA Storm Events Database is available at https://www.
ncdc.noaa.gov/stormevents/. Data from the NASA Passive
Microwave Hail Climatology Data Products V1 dataset are
available for download from https://search.earthdata.nasa.
gov/. The U.S. NDLN dataset regridded to the CMAQ CO-
NUS grid are available from https://www.cmascenter.org/
download/data/nldn.cfm. All model output used in the anal-
yses presented here, including a sample namelist, is avail-
able online (http://portal.nersc.gov/archive/home/projects/
m2645/www/public_data_2017_SGP_hail).
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Montávez, and E. Garcı́a-Bustamante, 2012: A revised scheme
for the WRF surface layer formulation. Mon. Wea. Rev., 140,
898–918, https://doi.org/10.1175/MWR-D-11-00056.1.

Jones, K. F., A. C. Ramsay, and J. N. Lott, 2004: Icing severity in
the December 2002 freezing-rain storm from ASOS data.
Mon. Wea. Rev., 132, 1630–1644, https://doi.org/10.1175/1520-
0493(2004)132,1630:ISITDF.2.0.CO;2.

Kain, J. S., 2004: The Kain–Fritsch convective parameterization:
An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.
1175/1520-0450(2004)043,0170:TKCPAU.2.0.CO;2.

}}, and J. M. Fritsch, 1993: Convective parameterization for
mesoscale models: The Kain–Fritsch scheme. The Representa-
tion of Cumulus Convection in Numerical Models, Meteor.
Monogr., No. 46, Amer. Meteor. Soc., 165–170, https://doi.
org/10.1007/978-1-935704-13-3_16.

Katsaprakakis, D. A., N. Papadakis, and I. Ntintakis, 2021: A com-
prehensive analysis of wind turbine blade damage. Energies,
14, 5974, https://doi.org/10.3390/en14185974.

Keegan, M. H., D. Nash, and M. Stack, 2013: Numerical model-
ling of hailstone impact on the leading edge of a wind tur-
bine blade. Proc. EWEA Annual Wind Energy Event 2013,
Vienna, Austria, European Wind Energy Association, 1–11,
https://strathprints.strath.ac.uk/id/eprint/42830.

Kendon, E. J., A. F. Prein, C. A. Senior, and A. Stirling, 2021:
Challenges and outlook for convection-permitting climate
modelling. Philos. Trans. Roy. Soc., A379, 20190547, https://
doi.org/10.1098/rsta.2019.0547.

Koch, S. E., B. Ferrier, M. T. Stoelinga, E. Szoke, S. J. Weiss,
and J. S. Kain, 2005: The use of simulated radar reflectivity

J OURNAL OF AP P L I ED METEOROLOGY AND CL IMATOLOGY VOLUME 6260

Authenticated cgarrison@ametsoc.org | Downloaded 01/27/23 06:34 PM UTC

https://doi.org/10.1029/2018MS001305
https://doi.org/10.1029/2018MS001305
https://doi.org/10.1175/JCLI-D-19-0137.1
https://doi.org/10.1175/JCLI-D-19-0137.1
https://doi.org/10.1029/2020JD034202
https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2
https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2
https://www.windpowerengineering.com/wind-farm-owners-can-now-detect-leading-edge-erosion-from-data-alone/
https://www.windpowerengineering.com/wind-farm-owners-can-now-detect-leading-edge-erosion-from-data-alone/
https://www.windpowerengineering.com/wind-farm-owners-can-now-detect-leading-edge-erosion-from-data-alone/
https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
https://www.osti.gov/biblio/1603478
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1175/WAF-D-17-0010.1
https://doi.org/10.1002/2016JD026068
https://doi.org/10.1002/2016JD026068
https://doi.org/10.1029/2019GL082092
https://doi.org/10.5194/gmd-13-5053-2020
https://doi.org/10.5194/gmd-13-5053-2020
https://doi.org/10.1029/2018JD029596
https://doi.org/10.3390/en14071959
https://doi.org/10.3390/en14071959
https://doi.org/10.1002/we.2122
https://doi.org/10.1002/we.2122
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.5066/F7TX3DN0
https://gpm.nasa.gov/sites/default/files/2020-02/IMERGV06_QI_0.pdf
https://gpm.nasa.gov/sites/default/files/2020-02/IMERGV06_QI_0.pdf
https://gpm.nasa.gov/resources/documents/imerg-v06-release-notes
https://gpm.nasa.gov/resources/documents/imerg-v06-release-notes
https://doi.org/10.5067/GPM/IMERG/3B-HH/06
https://doi.org/10.5067/GPM/IMERG/3B-HH/06
https://docserver.gesdisc.eosdis.nasa.gov
https://docserver.gesdisc.eosdis.nasa.gov
https://standards.iteh.ai/catalog/standards/iec/6aae4b87-f0f6-474c-a3ce-da2b91697249/iec-61400-24-2019
https://standards.iteh.ai/catalog/standards/iec/6aae4b87-f0f6-474c-a3ce-da2b91697249/iec-61400-24-2019
https://doi.org/10.1175/MWR-D-11-00056.1
https://doi.org/10.1175/1520-0493(2004)132<1630:ISITDF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1630:ISITDF>2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1007/978-1-935704-13-3_16
https://doi.org/10.1007/978-1-935704-13-3_16
https://doi.org/10.3390/en14185974
https://strathprints.strath.ac.uk/id/eprint/42830
https://doi.org/10.1098/rsta.2019.0547
https://doi.org/10.1098/rsta.2019.0547


fields in the diagnosis of mesoscale phenomena from high-
resolution WRF model forecasts. Preprints, 11th Conf. on
Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc.,
J4J.7, https://ams.confex.com/ams/32Rad11Meso/webprogram/
Paper97032.html.

Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory
model for exploring the environmental controls on hail size:
Model physics and idealized tests. J. Atmos. Sci., 77, 2765–
2791, https://doi.org/10.1175/JAS-D-20-0016.1.

Labriola, J., N. Snook, Y. Jung, and M. Xue, 2019a: Explicit en-
semble prediction of hail in 19 May 2013 Oklahoma City
thunderstorms and analysis of hail growth processes with sev-
eral multimoment microphysics schemes. Mon. Wea. Rev.,
147, 1193–1213, https://doi.org/10.1175/MWR-D-18-0266.1.

}}, }}, M. Xue, and K. W. Thomas, 2019b: Forecasting the
8 May 2017 severe hail storm in Denver, Colorado, at a con-
vection-allowing resolution: Understanding rimed ice treat-
ments in multimoment microphysics schemes and their effects
on hail size forecasts. Mon. Wea. Rev., 147, 3045–3068,
https://doi.org/10.1175/MWR-D-18-0319.1.

Letson, F., R. J. Barthelmie, and S. C. Pryor, 2020a: RADAR-
derived precipitation climatology for wind turbine blade lead-
ing edge erosion. Wind Energy Sci., 5, 331–347, https://doi.
org/10.5194/wes-5-331-2020.

}}, T. J. Shepherd, R. J. Barthelmie, and S. C. Pryor, 2020b:
WRF modelling of deep convection and hail for wind
power applications. J. Appl. Meteor. Climatol., 59, 1717–
1733, https://doi.org/10.1175/JAMC-D-20-0033.1.

Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly
precipitation analyses: Development and applications. Proc.
19th Conf. Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2,
https://ams.confex.com/ams/Annual2005/techprogram/paper_
83847.htm.

Madi, E., K. Pope, W. Huang, and T. Iqbal, 2019: A review of in-
tegrating ice detection and mitigation for wind turbine blades.
Renewable Sustainable Energy Rev., 103, 269–281, https://doi.
org/10.1016/j.rser.2018.12.019.

Major, D., J. Palacios, M. Maughmer, and S. Schmitz, 2021: Aero-
dynamics of leading-edge protection tapes for wind turbine
blades. Wind Eng., 45, 1296–1316, https://doi.org/10.1177/
0309524X20975446.
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Abstract: An enhanced understanding of the mechanisms responsible for wind turbine blade leading-
edge erosion (LEE) and advancing technology readiness level (TRL) solutions for monitoring its
environmental drivers, reducing LEE, detecting LEE evolution, and mitigating its impact on power
production are a high priority for all wind farm owners/operators and wind turbine manufacturers.
Identifying and implementing solutions has the potential to continue historical trends toward lower
Levelized Cost of Energy (LCoE) from wind turbines by reducing both energy yield losses and opera-
tions and maintenance costs associated with LEE. Here, we present results from the first Phenomena
Identification and Ranking Tables (PIRT) assessment for wind turbine blade LEE. We document the
LEE-relevant phenomena/processes that are deemed by this expert judgment assessment tool to
be the highest priorities for research investment within four themes: atmospheric drivers, damage
detection and quantification, material response, and aerodynamic implications. The highest priority
issues, in terms of importance to LEE but where expert judgment indicates that there is a lack of
fundamental knowledge, and/or implementation in measurement, and modeling is incomplete
include the accurate quantification of hydrometeor size distribution (HSD) and phase, the translation
of water impingement to material loss/stress, the representation of operating conditions within rain
erosion testers, the quantification of damage and surface roughness progression through time, and
the aerodynamic losses as a function of damage morphology. We discuss and summarize examples
of research endeavors that are currently being undertaken and/or could be initiated to reduce un-
certainty in the identified high-priority research areas and thus enhance the TRLs of solutions to
mitigate/reduce LEE.

Keywords: blades; expert judgment; LEE; machine learning; PIRT; TRL; wind turbine

1. Introduction
1.1. Background and Motivation

The global wind resource greatly exceeds both current electricity demand and total
primary energy supply [1]. Wind energy is a potential mechanism to reduce energy-
related environmental issues (e.g., anthropogenic climate forcing [2]) and to enhance
energy security [3,4]. Many countries have ambitious plans to expand both onshore and
offshore wind energy installed capacity [5]. Thus, it is expected that more wind turbines
will be deployed, and we will become increasingly reliant on them for electricity generation.
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The Levelized Cost of Energy (LCoE) in $/MWh of electricity can be computed from

LCoE =
∑i

n=1 (CAPEXn + O&Mn)/(1 + r)n

∑i
n=1 AEP/(1 + r)n (1)

where CAPEX = capital expenditures in each year (n); O&M = operations and maintenance
costs in each year; r = annual discount rate; AEP = amount of electricity (in MWh) produced
each year; i = wind turbine lifetime in years.

In locations with good wind resources, onshore wind energy has the lowest LCoE of
any electricity generation type [6]. However, LCoE from onshore wind energy is no longer
declining [7], and costs for offshore deployments exceed those for onshore [8].

O&M typically account for 25–30% of the lifecycle LCoE from wind turbines [9].
Blades contribute > 20% of the overall cost of wind turbines [10], and blade integrity is
a fundamental determinant of both O&M and power generation (AEP). An important
contributing factor to wind turbine blade lifespan is leading-edge erosion (LEE). LEE refers
to the material loss of wind turbine blade coatings leading to exposure and ultimately loss
of the laminate that provides the structure of the blade. It results primarily from materials
stresses induced when hydrometeors (e.g., rain droplets or hailstones) impact the rapidly
rotating blades [11–14]. The material loss leads to a roughening of the surface, reducing
lift and increasing drag [15], and thus negatively impacts AEP [15–19]. LEE requiring
emergency blade repair can occur within two years of installation [20], which is far short
of the expected lifetime of 30 years [21]. O&M expenditures associated with total blade
replacement for onshore wind turbines are >$200,000 and blade replacement may lead to
multiple days of lost power production [22].

Wind turbines being deployed offshore are physically larger and have both longer
blades and higher tip speeds than those deployed onshore [23]. This leads to higher closing
velocities with falling hydrometeors, higher materials stresses [20], and thus a higher
erosion rate [24,25]. Wind turbines being deployed at the South Fork Wind Farm off the
USA East Coast are GE Haliade-X 13 MW machines with blades 107 m in length, each of
which weighs 55 tons [26]. These wind turbines have maximum tip speeds of >90 ms−1.
The 22 MW reference wind turbine that has recently been released for use in offshore
research [27] has even longer blades and a rated tip speed of 105 ms−1. Manufacturing
defects and damage during transportation/deployment are likely enhanced in longer
blades [28,29] and even small imperfections may be important sites for the initiation of
LEE [29]. Thus, LEE issues may be particularly prominent offshore where O&M costs are
much higher [23], and the avoidance of excess maintenance is paramount to reducing the
LCoE. In 2018, Renew.Biz reported that the consortium behind the 630 MW London Array
in the UK was planning “emergency” blade repair to 140 of the project’s 175 wind turbines
and that ‘A similar repair campaign has begun at Orsted’s 400 MW Anholt wind farm
off Denmark, where 87 of 111 . . .. . . turbines are being fitted with rubber-like shells to fix
the problem’.

LEE thus represents an important challenge to the cost-effectiveness and reliability of
wind-derived electricity and there is a need to advance the fundamental understanding of
the processes that cause LEE and to advance effective solutions.

1.2. The Interdisciplinary Nature of LEE: Introduction to the Four LEE Themes

Over 40 years ago, the US National Aeronautics and Space Administration intro-
duced “technology readiness levels” (TRLs) as a conceptual framework for measuring and
articulating the maturity, or readiness for deployment, of emerging technologies. TRL
assessments are usually based on a 9-point scale with higher values indicating more mature
technologies and lower values indicating more nascent technologies that are in the stages
of basic research, or feasibility studies [30,31].

Enhancement of the TRLs for solutions to mitigate/reduce LEE requires multidisci-
plinary research within four linked themes (Figure 1). Theme 1 is focused on the atmo-
spheric drivers of LEE and thus requires research primarily in the field of atmospheric
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science. Theme 2 is focused on the detection and quantification of blade damage and thus
requires research primarily within imaging and image processing plus acoustic monitoring.
Theme 3 is focused on blade response/redesign/repair/protection and thus requires re-
search primarily within the material science field. Theme 4 is focused on the detection of
aerodynamic changes due to LEE and the estimation of resulting power reduction and thus
requires research primarily within the field of aerodynamics. All themes further require
advances in computational tools and measurement technologies. An introduction to each
of these themes is briefly given below.
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primary information links between the themes.

1.2.1. Theme 1—Atmospheric Drivers of LEE

The amount of kinetic energy transferred into the blade from an ensemble of falling
hydrometeors and the material response is dictated by the closing velocity (vc) between the
falling hydrometeor(s) and the rotating blades, plus the number, diameter (D), and phase of
hydrometeors (i.e., hailstones, graupel, or rain droplets). The impact force and the kinetic
energy transferred into the coating scales with the hydrometeor mass and closing velocity
squared [32]. Larger diameter drops may be of greater importance in dictating the kinetic
energy transfer to the blades and hence the duration of the incubation period (i.e., the period
prior to material loss, see details below) [14,33] while smaller drops may be more critical in
the transition and steady state progression [34]. The water-hammer equation describes the
pressure exerted on a coating by the impact as a function of closing velocity [32,35,36]. For
vc = 80 ms−1, a single 2 mm diameter rain droplet may exert a pressure of up to 120 MPa
on the blade surface [32]. The hydrometeor phase is of importance because the material
response to hail (ice) exceeds that due to collisions with rain (liquid) droplets [32,37–40]. As
few as five hailstone impacts (D of 15 and 20 mm) at vc ≥ 110 ms−1 can cause damage to a
glass-fiber-reinforced plastic composite [41]. Thus, the prediction of LEE requires accurate
and consistent descriptions of hydroclimate conditions, including precipitation intensity,
phase, and hydrometeor size distributions (HSD) from measurements and models across
the wide range of environments in which wind turbines are or will be deployed. However,
as discussed in detail below, best practice for the selection and operation of precipitation
sensors within the context of LEE has not yet been advanced [14], and numerical models
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exhibit only partial fidelity for precipitation rate and phase, and most simulations do not
explicitly simulate or output HSD.

A hierarchy of models have been generated to translate precipitation intensity/HSD
and closing velocities to estimates of potential erosion. First-order erosion models rely on
the volume (or depth) of impinged water without the explicit consideration of hydrometeor
size and/or phase [24]. Alternatively, VN curves (velocity–number of impacts to failure,
see ‘material response’) derived from rain erosion testers can be used to articulate functions
that describe the number of impacts at a given closing velocity for a given hydrometeor
diameter required for the initiation of coating damage and that can be used (with caution)
to extend beyond the measured range of closing velocities. For example, assuming all
hydrometeors have the same effective diameter, the accumulated distance to failure (ADF)
of the coating is given by the following:

ADF =
j

∑
i=1

Vtip ·I·∆t
v f

H0·
(

vc
V0

)m (2)

where V0 is 1 ms−1, vc is the closing velocity between the hydrometeor and blade, vf is
the hydrometeor fall velocity (ms−1), ∆t is the time interval (s) for the specification of the
tip speed and precipitation intensity (I, in ms−1). H0 and m are fitting parameters that
are specific to the coating material tested, but for one coating and D = 0.76, these fitting
parameters are 2.85 × 1022 m and −10.5, respectively [42]. The summation is over all time
periods: i = 1 to j. Thus, the challenge is to specify a representative effective diameter to
characterize the precipitation that falls from stratiform and cumulus clouds and over a
wide range of intensity ranges [43]. More mechanistic models require greater specificity in
terms of the HSD/phase and range of fall velocities and are described below in Theme 3.

Less is known regarding the possible contribution of other meteorological variables
to LEE. Prolonged exposure to radiation within the visible range, and particularly UV-A
(wavelengths (λ) = 320 and 400 nm), may lead to the degradation of polyurethane coat-
ings [32,44]. Theoretical and experimental work has also indicated that low temperatures
degrade the erosion performance of polyurethane-protective leading-edge coatings [45].
Thermal cycling (expansion and contraction of the blades) is an important source of mate-
rial wear [46]. Other plausible meteorological co-stressors include impacts from aerosols
(e.g., wind-blown dust/sand [47,48]) and ice accretion on blades [49].

1.2.2. Theme 2—Damage Detection and Quantification

LEE pattern categorization frequently employs five classes, with Class 1 “small pin-
holes” exhibiting an erosion depth of 0.1–0.2 mm, an average feature damage of 2 mm,
and an approximate cord coverage of 3% [17]. Even Class 1 LEE may result in AEP loss.
The early detection and close monitoring of damage progress can help optimize mitigation
strategies and identify appropriate maintenance actions (patching and minor repair to
full-scale blade removal) [50–53].

Current techniques for real-time wind turbine blade damage detection [54,55] include
vibration-based techniques [56], ultrasound scanning techniques [57], acoustic emission
monitoring [58], and machine vision, image, or video processing [59]. Three out of four of
these LEE detection methods (acoustic emission, ultrasound, vibration-based techniques)
require the use of physical sensors placed along the blade or near the wind turbine, which
can be costly and vulnerable to damage in extreme meteorological conditions [60]. Image
processing methods can be used to assess blade conditions from 2D and 3D images or
videos captured by instrumentation deployed on unmanned aerial vehicles (UAVs) [61] or
taken by technicians [62]. However, as discussed below, the fidelity of different damage
detection methods has not been fully quantified.
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1.2.3. Theme 3—Material Response

Wind turbine blades are made of composites (e.g., epoxy or polyester, with reinforcing
glass or carbon fibers) [63] coated to protect them by distributing and absorbing energy
from hydrometeor and other impacts [64]. Defects such as air bubbles in these coatings
have a critical impact on crack initialization [65] and re-emphasize the importance of wind
turbine blade manufacturing quality in dictating erosion rates.

Erosion mechanics comprises an incubation period during which no damage is ob-
served but microstructural material changes can generate nucleation sites for subsequent
material removal. Material removal commences when a threshold level of accumulated
impacts is reached [66]. This is followed by a period during which additional impacts lead
to observable damage as stress waves propagate from impact locations. This leads to the
growth of pits/cracks and an increase in material loss [67–69]. The number of impacts
required to reach the threshold at which material failure becomes evident is thus a nonlinear
function of the number, magnitude, and phase of the hydrometeors and the hydrometeor
closing velocity plus the material strength [70].

Whirling Arm Rain ERosion testers (WARERs, or more simply rain erosion testers,
RET) artificially simulate the erosion process by spinning a sample of the blade, often with
a leading-edge protection applied, at very high speeds and bombarding the sample with
liquid droplets (of a confined droplet diameter range) supplied via needles [71]. These
experiments can be used to develop VN curves and thus to derive empirical coefficients for
use in Equation (2). However, the range of closing velocities sampled and used to derive
the fitting parameters m and H0 specified below in Equation (2) for hydrometeor D of
0.76 mm are 90 to 150 ms−1, and thus exceed many of those that will occur.

Alternatively, a range of modeling techniques have been advanced to simulate the pro-
cess of material stresses that lead to LEE as a function of hydrometeor size distribution and
closing velocity [68,70,72]. The simplest method is to employ the Springer model [73,74]
combined with Miner’s rule to integrate across all hydrometeor diameters (and time) to
quantify the accumulated distance to failure (ADF) [66,75]. However, these simple engi-
neering models of LEE include multiple coefficients/assumptions that limit the robustness
of lifetime estimates, and when invoking Miner’s rule, the damage is assumed to be linearly
accumulated.

1.2.4. Theme 4—Aerodynamic Implications

A smooth leading edge reduces turbulence and drag, optimizing the lift-to-drag ratio
of a wind turbine blade. The outer part of the blade (toward the tip) produces most of
the energy and experiences the highest relative wind speeds. Thus, the leading edge
toward the blade tip is both the most vulnerable to roughening by material loss and is
also where reducing lift/increasing drag maximizes the negative impacts on the AEP. The
maximum lift force on blades has been modeled to be reduced for damage associated with
roughness heights of 0.11 mm for a rotor with a 175 m diameter [16]. Erosion classes 3
to 5 (large patches of missing coating, the erosion of laminate, and the complete loss of
laminate, respectively), are associated with AEP reductions of 1–5% [76]. Recent reports
found LEE-induced AEP losses from onshore wind turbines after only 1–3 years [77], but
there is a paucity of data regarding underlying blade LEE topologies. The damage location
on the blade is known to play a critical role in the alteration of the aerodynamic behavior,
and so there are clear links between Themes 2 and 4 [78].

The Simplified Aerodynamic Loss Tool (SALT) [79] can be used to illustrate the pre-
dicted effect of erosion on the power coefficient (CP) and the AEP loss relative to clean or
undamaged blades, while acknowledging that it omits many of the details of more complex
models [80]. Within SALT, damage is specified in 2% increments over the outer 70% of the
blade (location r as a fraction of blade radius R) using a five-level categorization. Category
a is undamaged, and the lift-to-drag ratio loss factor is 1. Category e represents the most
severe damage which is deeper than 0.3% of the blade chord and the lift-to-drag ratio loss
factor = 0.3. For the IEA 15 MW reference wind turbine [81] and a hub-height wind speed
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of 10 ms−1, the CP for an entirely undamaged blade is ~0.4551, reducing it to ~0.2907 for
category e damage. CP correction factors (multipliers to CP) are shown as a function of
r/R in Figure 2a for a wind speed of 10 ms−1. The impact of the roughening of the leading
edge on the blade lift and drag and the power production is a nonlinear function of inflow
wind speed and is specifically important at the below-rated wind speeds (Figure 2b) and
also depends on turbulence intensity [19]. Thus, the AEP loss is dependent on the site’s
wind climate. Assuming a Weibull distribution of hub-height wind speeds for a typical US
Central Plains site [14], the AEP loss for different erosion levels along the outer 70% of the
blade is shown in Figure 2c. While this analysis is useful for illustrative purposes, uniform
damage is unlikely to occur across such large areas of a blade, thus the AEP loss estimates
greatly exceed those that are likely to be observed. Further, the attribution of any loss in
blade performance to any specific cause (e.g., LEE, gearbox wear-and-tear, the soiling of
blades) is very challenging [82,83], particularly in operating wind farms.
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Figure 2. Results from the SALT model for (a) CP correction factors as a function of distance along the
blade for a clean blade (shown by the blue line, Category a damage) and substantial damage (shown
by the black line, Category e damage) along the outer two-thirds of the blade for a hub-height wind
speed of 10 ms−1 for the IEA 15 MW reference wind turbine. (b) Power curves (power generation as
a function of hub-height wind speed) for the IEA 15 MW reference wind turbine for a clean blade
(Category a damage) and a damaged blade (Category e damage). (c) AEP loss for damage categories
a to e and o3e (level 3 damage only for the outer one-third of the blade) for the IEA 15 MW reference
wind turbine and the Weibull-distributed wind speeds from a US Southern Great Plains site [14].

Optimizing O&M as LEE progresses for cost-effectiveness requires not only accurate
damage assessment but also a robust, quantitative understanding of the effect of LEE on
blade aerodynamics. For example, if the damage is minor pitting without material losses,
the aerodynamic efficiency may only be slightly lower than its design, and potentially only
impacts the aerodynamics at some tip speed ratios. In this case, unless the damage is likely
to propagate, it may be more cost-effective to wait rather than to order repairs. On the other
hand, if material damage has penetrated beyond the blade coating, even a small gouge may
potentially leave open the possibility of further material loss and extensive delamination
impacting not only the aerodynamics but necessitating costly on-site repairs.

1.3. Possible Solutions for Leading-Edge Erosion

Fundamentally, efforts to reduce LEE can be placed into two classes:

• Enhanced blade resilience: This may be achieved by blade redesign and/or the use
of improved materials (e.g., more energy consuming coatings) [84,85], improved
manufacturing, and/or the use of leading-edge protection (LEP) products. A range
of LEP products are available including the following: (1) In-mould application
of a gelcoat (e.g., epoxy) during blade manufacturing or co-bonding to an erosion
shield (rigid/semi-rigid covers). (2) Post-mould application of flexible coatings (e.g.,
polyurethane [86]) using sprayers/rollers or flexible tapes [87] or thermoplastic ero-
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sion shields [88]. The details of the relative merits of these solutions, including their
durability have been previously reviewed [20,89,90]. Best practice for the optimal
length of LEP from the tip of the blade is being investigated [91] as is the optimal
thickness of application [92]. All protective solutions incur additional costs and reduc-
tions in aerodynamic performance and AEP. For example, some research has reported
2–3% AEP losses from LEP tapes [15,87]. Further, some post-mould LEP products are
challenging to apply (see below, Section 3.4) and/or lack durability [93].

• Operation of wind turbines in a manner to reduce materials stresses: Specifically, use
of erosion safe mode [11] wherein wind turbine operation is modified during highly
erosive periods to reduce blade rotational speed, thus sacrificing the AEP to elongate
blade lifetime [94].

Both classes of solution require a detailed assessment of site conditions regarding likely
severity of LEE since the incubation, transition, and steady state progression of damage on
the leading edge differs as a function of precipitation climate and possibly other operating
conditions [16]. A quantitative comparison of overall cost effectiveness requires detailed
information regarding (i) AEP loss from LEE, LEP application (including down-time if
LEP is applied post-commissioning) and/or the adoption of erosion safe mode. (ii) The
cost of LEP measures and the expense of deployment [22] and robust economic/financial
information such as the spot market price for electricity [95]. Ultimately, an optimal solution
is likely to be one which maximizes revenues over a specific period of time for a given
wind farm [96]. The consideration of either solution type for a given situation demands
robust knowledge of processes/phenomena in each of the four themes described above.
Thus, the issue confronting the wind energy industry is how to prioritize research to reduce
uncertainty and increase confidence for wind farm owners/operators and enhance the TRL
for LEE mitigation.

1.4. Objectives of This Work

Our goal is to map priorities for LEE research that can enhance the technology readi-
ness levels for LEE solutions such as those described in Section 1.3, and thus aid in reducing
the LCoE from wind turbines. To achieve this goal, we undertook, and herein present,
the first Phenomena Identification and Ranking Tables (PIRT) assessment for wind tur-
bine blade LEE (Section 2). Following the presentation of the PIRT analysis, we discuss
the research required and/or being conducted to address the highest priority research
needs identified during the PIRT process and that are necessary to enhanced TRLs of LEE
solutions (Section 3). We conclude in Section 4 by describing the next steps.

2. PIRT

The PIRT process (MATLAB R2024a from MathWorks) is a systematic way of gathering
information regarding processes on a specific concept and ranking their importance to meet
some decision-making objective such as the prioritization of research activities to enhance
the TRL. PIRT has been widely applied within, for example, nuclear safety [22,97,98], but is
gaining traction in other disciplines [99].

A schematic workflow of the PIRT process as applied in this research is given in
Figure 3. Steps 1 and 2 require the identification of a topic of interest and then the articu-
lation of the PIRT objective(s). To aid in structuring the PIRT by thematically clustering
processes/phenomena, in Step 3 four LEE themes were articulated (Section 1). The PIRT
analysis then proceeded by polling experts to identify key phenomena in each of these LEE
themes, acknowledging that some phenomena cross the thematic boundaries. Following
best practice in prior PIRT analyses [22], once each of the processes/phenomena were
identified, domain experts were asked to provide for each a ranking of ‘high’, ‘medium’, or
‘low’ priority. To derive a mean ranking and the standard deviation (SD) across respondents,
rankings of ‘high’ were allocated 1 point, medium as 0.5, and low as 0. As an example,
the need for hydrometeor size distributions (HSD) (jointly with wind speeds) to inform
LEE assessment was given a mean ranking of 0.86 and the standard deviation was 0.32



Energies 2024, 17, 6285 8 of 29

(Table 1). These rankings are because >80% of respondents gave a ranking of high, and
approximately 10% gave a ranking of either medium or low.
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The second component of PIRT analyses (Step 6) is to evaluate the state of knowledge
with respect to each process/phenomenon. Here, we broke this down into two aspects:

1. What is the state of knowledge regarding this phenomenon/process and how well has
knowledge regarding this process/phenomenon been translated into measurement
technologies and data analysis procedures?

2. What is the state of knowledge regarding this phenomenon/process and how well has
knowledge regarding this process/phenomenon been translated into state-of-the-art
modeling tools?

Conceptually, the goal of this combined rating system is to identify phenomena/
processes that have high importance and where critical knowledge gaps preclude full
treatment of those phenomena/processes in numerical models or current measurement
technologies and data analysis tools. Such phenomena/processes will have high impor-
tance ratings but low measurement/modeling ratings. Advancing knowledge for these
topics is most likely to enhance TRLs for LEE solutions. In this preliminary PIRT analysis,
respondents were also encouraged to supply narratives explaining their rankings.

Based on PIRT, one can identify key processes and phenomena that are of high impor-
tance but where the state-of-the-art ability to measure or simulate them is deemed good. An
example is hub-height wind speeds at operating wind farms. These wind speeds are critical
to power production and blade tip speed predictions. The mean ranking for phenomena
importance was >0.9 with small standard deviation (≤0.2) indicating a consensus of this
ranking. But the ratings for the translation of knowledge to measurements and/or models
is also rated as high. Nacelle-mounted anemometers and/or remote sensing technologies
such as lidars have been demonstrated to have relatively high fidelity with respect to wind
speeds within the rotor plane even in complex terrain [100] and offshore [101]. Multiple
modeling exercises have also demonstrated that numerical weather prediction (NWP)
models such as the Weather Research and Forecasting (WRF) model, particularly when
coupled with micro-scale flow models, also exhibit relatively high fidelity [102]. This does
not imply that there is not a need for continuing to improve measurement and modeling
capabilities but that, in the context of LEE, other research activities should be prioritized.
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Table 1. PIRT analysis results. Column 1: Processes/phenomena of interest. Columns 2 and 3:
Mean (mean) ranking and the standard deviation (SD) of the rankings across respondents. Expert
judgment evaluation of the knowledge regarding each process/phenomenon as translated into
state-of-the-art measurements (columns 4 and 5) and modeling (columns 6 and 7). Items in black
have high importance (mean > 0.8) and process-level understanding has been well translated to
measurement technologies and/or modeling (mean > 0.5). Processes/phenomena in red have high
importance (mean > 0.8) but process-level knowledge is lacking and/or translation of that knowledge
to measurement and modeling capabilities is poor (mean < 0.5) and thus are defined as tier 1 for
research. Items in blue are tier 2 priorities for research; moderate importance (0.5 < mean < 0.8) and
process-level knowledge and translation to models and measurements are incomplete (mean < 0.6).
Items in green have importance level scores (mean < 0.5). Note: processes/phenomena are listed in
the order in which they were presented to the respondents to avoid confusion that the ranked order
of importance is systematically a function of the row number in the PIRT.

Processes/Phenomena
Importance Level Measurement Modeling

Theme 1: Atmospheric drivers Mean SD Mean SD Mean SD

Hub-height wind speeds: existing wind farms 0.92 0.19 1 0 0.73 0.26

Hub-height wind speeds: prospective wind
farms 0.91 0.2 0.82 0.25 0.68 0.25

Hydrometeor size distribution 0.86 0.32 0.27 0.41 0.2 0.26

Hydrometeor phase (rain/hail/other) 0.91 0.3 0.36 0.39 0.14 0.23

Hydrometeor fall velocities 0.58 0.36 0.41 0.38 0.32 0.34

Impinged water (blade capture efficiency as a
function of droplet diameter) 0.55 0.44 0.15 0.34 0.1 0.21

Real-time data for ‘erosion safe mode’ 0.68 0.25 0.18 0.34 0.46 0.33

Space/time variability in hydroclimate
conditions 0.64 0.23 0.59 0.2 0.59 0.2

Non-hydrometeor weathering stressors (e.g., UV
radiation, icing, thermal expansion, aerosols (incl.

dust and pollution))
0.55 0.27 0.18 0.25 0.27 0.34

Reanalysis/gridded product data quality 0.44 0.17 0.67 0.25 0.81 0.26

Theme 2: Damage detection and quantification Mean SD Mean SD Mean SD

Availability of blade images and methods to
quantify damage 0.83 0.25 0.54 0.33 0.5 0.33

Damage characterization from varying image
types and methods to translate to damage

classification
0.88 0.23 0.58 0.29 0.44 0.3

Methods for 3D characterization of damage
morphology and rate of progression 0.71 0.26 0.25 0.26 0.18 0.25

Translating water impingement to material
loss/stress (e.g., metrics: kinetic energy,

Springer–ADF, VN curves)
0.86 0.23 0.27 0.26 0.36 0.23

Quantification of material loss 0.71 0.26 0.5 0.39 0.27 0.26

Quantification of equivalent surface roughness
for aerodynamic loss 0.75 0.26 0.41 0.3 0.45 0.27

Microplastic loss for environmental impacts 0.5 0.21 0.21 0.26 0.27 0.26
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Table 1. Cont.

Processes/Phenomena
Importance Level Measurement Modeling

Theme 3: Material response Mean SD Mean SD Mean SD

Rain erosion tester reliability and reproducibility 0.92 0.19 0.59 0.3 0.4 0.21

Rain erosion tester representation of atmospheric
conditions: hydrometeors: phase (e.g., rain and
hail), size distributions and collision velocities

0.83 0.25 0.5 0.33 0.28 0.26

Rain erosion tester representation of atmospheric
conditions: flow field (e.g., impact velocities) 0.71 0.33 0.45 0.28 0.28 0.36

Methodologies to translate lab experimental data
(incl. rain erosion tester) to field conditions and

failure modes
0.88 0.23 0.35 0.24 0.3 0.26

Damping and energy dissipation properties of
LEPs/coatings (single/multilayer) 0.67 0.25 0.32 0.25 0.45 0.16

Linking mechanical and viscoelastic properties to
failure mechanisms/modes 0.73 0.26 0.32 0.25 0.4 0.32

Coating adhesion and mechanics of multi-layer
materials 0.75 0.26 0.45 0.44 0.55 0.28

Material response to non-hydrometeor
weathering stressors (e.g., UV radiation, icing,

thermal expansion, aerosols (incl. dust))
0.64 0.23 0.36 0.32 0.35 0.24

Theme 4: Aerodynamic implications of LEE Mean SD Mean SD Mean SD

Quantification of damage and surface roughness
progression through time 0.95 0.16 0.4 0.32 0.45 0.28

Attribution of AEP loss to LEE (via effective
surface roughness) 0.88 0.23 0.35 0.34 0.5 0.24

Attribution of AEP loss to application of LEP
measures 0.75 0.26 0.4 0.39 0.55 0.28

Quantifying evolution of power curve through
time (incl. post deployment) 0.75 0.26 0.3 0.42 0.3 0.42

Optimization of damage repair solution/timing 0.9 0.21 0.35 0.34 0.5 0.33

Equally, there are processes/phenomena where understanding is lacking, but un-
certainty in a process/phenomenon is not deemed to be a current primary limitation on
TRLs for LEE solutions. Such a process/phenomenon might be deemed tier 2 for research
effort. An example drawn from Theme 1 atmospheric drivers is non-hydrometeor stressors,
which received a mean process/phenomena importance level rating of 0.55, and both
measurement and modeling require improvement.

A high SD of rankings also conveys information about the divergence of opinions
across the experts. An example from Theme 1 is the estimation of impingement efficiency
as a function of the hydrometeor diameter [103]. The mean rating for importance was 0.55,
but the variability around that was large (SD = 0.44). Thus, there is substantial variability in
the opinions regarding whether the ‘capture’ of hydrometeors of different sizes by the blade
leading edge is <1 for the hydrometeors of greatest importance to damage, and whether
there is uncertainty in the D and vc dependence of impingement efficiency.
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3. Discussion of Exemplar Research Activities Designed to Address Critical Research
Needs Identified in the PIRT Process and Thus to Improve TRLs of LEE Solutions
3.1. Phenomena/Processes Given Tier 1 Priority Within the Atmospheric Drivers Theme

Two processes/phenomena within Theme 1 were identified as tier 1 priority: hydrome-
teor size distribution (HSD) and phase. The narratives supplied within the PIRT framework
and past research suggest that although these are phenomena of importance, the knowl-
edge or translation of knowledge to improve measurement/data analysis procedures or to
modeling tools is insufficient. Materials stresses are demonstrably a function of the number
and diameter of impinging hydrometeors. The HSD (and hydrometeor phase) is also a
function of precipitation intensity and of temporal and spatial scale [104]. For example, an
analyses of data from the US Southern Great Plains showed that 10% of 1 min precipitation
rates exceeded 4.5 mmhr−1, while the 90th percentile value for 10 min precipitation rates
were <2.3 mmhr−1 [14]. A study in Switzerland using automated hail sensors found that
75 % of local hailfalls lasted just a few minutes (from less than 4.4 min to less than 7.7 min,
depending on a parameter to delineate the events) and that 75 % of the impacts occurred in
less than 3.3 min to less than 4.7 min [105]. These findings imply not only a need for the
robust assessments of precipitation rate, HSD, and phase but also that such data, whether
from measurements or models, need to be available at high spatiotemporal resolution.

A range of technologies exist to measure the precipitation intensity (collectively re-
ferred to as rain gauges (RG)) [106] and HSD (i.e., instruments that measure hydrometeor
number concentrations in size classes and are referred to as disdrometers) [14]. Some
disdrometers also measure the fall velocity, phase, and sphericity (which is required to
compute the hydrometeor mass and kinetic energy transfer) [14]. In the case of optical
(or laser) disdrometers, the hydrometeor D is measured by the number of horizontal laser
beams broken by the hydrometeor and the vf is derived from the duration of time that the
beams are interrupted.

Assuming spherical droplets, the precipitation rate (RR in mmhr−1) from a disdrome-
ter is proportional to the sum of the number of size distributed hydrometeors (n in diameter
(D) class i = 1 to j) as follows:

RR ∝ ∑j
i=1 niD3

i (3a)

or more explicitly for the OTT Parsivel2 disdrometer (which has 32 diameter classes):

RR =
π

6
3.6
103

1
Ft∑

32
i=1 niD3

i (3b)

where F is the instrument ‘field of view’, and t is the duration of time during which the
hydrometeor counts are made.

The implication of Equation (3a,b) is that small errors in hydrometeor diameter can
yield large errors in RR. Hence, if the precipitation rate is to be derived from disdrometers,
the accurate assessment of the hydrometer diameter is a necessary pre-requisite, but the axis
ratio (the ratio of the vertical dimension of the hydrometeor to the horizontal dimension)
for liquid hydrometeors is generally <1 and scales with the horizontal dimension [94,107].
Most disdrometers report RR computed by integrating overall hydrometeor diameters and
fall velocities using proprietary software which includes correction factors, e.g., for the axis
ratio of hydrometeors that are not fully specified.

When the accumulated depth of precipitation (or precipitation intensity) from dis-
drometers is compared with tipping or weighing rain gauges that measure only the mass
or depth of water accumulated over a time interval, incomplete closure is achieved [108].
Thus, even if the first-order models of nominal erosion rates (such as those described above)
are employed, the source of the precipitation data are a major source of uncertainty in
lifetime estimates. For example, data were being collected at the Wind Energy Institute of
Canada (WEICan) wind farm in Prince Edward Island, Canada, using an OTT Parsivel2

optical disdrometer and an unheated Campbell Scientific TE525 Tipping Bucket Rain Gauge
(RG) (Figure 4a). Because the RG was unheated, in the following, we selected only data
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collected during the summer months to avoid periods with snowfall. Hourly summer-
time accumulated precipitation from the disdrometer was consistently lower than that
from an RG across a wide range of precipitation rates and wind regimes (Figure 4b,c).
Although the disdrometer was more likely to report non-zero precipitation (even when
the threshold to detect precipitation was set to that determined by the tip volume of the
rain gauge, Figure 4d), of particular importance to LEE, the RG at WEICan exhibited twice
the frequency of occurrence of precipitation rates > 10 mm/hr. When conditionally sam-
pled to select periods when both sensors exhibited non-zero precipitation, the probability
of extreme precipitation being reported by the RG was also higher than that from the
disdrometer (Figure 4c).
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Figure 4. (a) Precipitation sensors deployed at WEICan. (b) Scatterplot of hourly precipitation
(PPT) from the rain gauge (RG) and OTT disdrometer (Dis) for data collected during May–October
of 2022 and 2023. Symbols scale with, and are colored by, prevailing wind speed at wind turbine
hub-height (HH). (c) Histograms of hourly precipitation for all hours when both sensors report
non-zero precipitation. (d) Heatmap of the joint probability of no precipitation (defined using a
threshold of 0.126 mm, i.e., minimum reported by the RG) from RG and Dis. As shown, 7% of hours
exhibited precipitation of >0.126 mm from both sensors. (e) Example photograph of leading-edge
erosion on one of the wind turbines operating at WEICan.

More mechanistic models of material stress and erosion include information regarding
HSD (i.e., the concentration of hydrometeors of given diameters, Di) which can be derived
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from the disdrometer measurements of the number counts (n(i,v)) in diameter (i) and fall
velocity (vf) classes:

N(Di) = ∑x
v=1

n(i, v)
Ftv f (i, v)∆Di

(4)

where x is the number of fall velocity classes and ∆Di is the width of each diameter class, i.
The implication of Equation (4) is that small errors in either hydrometer D or fall velocity can
yield substantial errors in the derived HSD (i.e., the expression of number concentrations as
a function of hydrometeor diameter). However, measured HSD also differ across different
disdrometers, and standardized data processing procedures are lacking [14,94,109]. Further,
there is evidence that the relative performance of different disdrometers is a function of the
prevailing climate [14]. Accordingly, when measurements from the three most commonly
used disdrometers types (optical, impact, and video) were used to compute accumulated
kinetic energy of transfer from hydrometeor impacts to wind turbine blades at an example
site in the US Southern Great Plains, the results differed by 38% [94]. The results differed
by 100% when different data analysis protocols that vary in terms of the permitted range of
fall velocities regarding hydrometeor asymmetry were applied to a single disdrometer [94].
Also, even excluding effects from hydrometeor hardness, hail may be substantially more
erosive than rain due to the higher diameters of these hydrometeors. Many disdrometers
use proprietary empirical functions to indicate the possible presence of hail based on
hydrometeor diameter and/or fall velocity rather than directly detecting it.

Research to reduce uncertainty in HSD/vf/sphericity (axis ratio)/phase, and ulti-
mately to provide best practice for measurements at prospective or operating wind farms
is ongoing. This includes an experiment performed at an airport in upstate New York in
which two identical OTT Parsivel2 optical disdrometers were deployed close to a highly
maintained Mesotech heated tipping bucket RG (part number 29000503) deployed as part
of the Automated Weather Observing System operated by the US Federal Aviation Ad-
ministration. The experiment ran from June to September 2024, inclusive (154 days of
1 min observations), and focused on summer months to avoid snowfall periods. It was
designed to test whether the presence of large diameter hydrometeors reported at vf < vt
(where vt is the terminal fall velocity) for that D [110] was due to horizontal advection of the
droplets during high wind events. Accordingly, one of the disdrometers was deployed with
a windshield and the other without as typified by the current deployments at operating
wind farms (Figure 5a). In contrast to the data being collected at WEICan (Figure 4), good
achievement was found between hourly precipitation intensity from the RG and disdrom-
eters across the entire dynamic range of the precipitation intensities (Figure 5b). Across
the range of observed wind speeds (0–12 ms−1) and wind gusts (0–18 ms−1) measured
using a sonic anemometer deployed at 10 m AGL, the two disdrometers exhibited a high
degree of agreement in terms of the detection of precipitation (Figure 5d) and the amount of
precipitation (Figure 5b), and there was no evidence that the degree of agreement between
the disdrometers and the RG scales with wind intensity (Figure 5b). This experiment
did not suggest that the wind shielding of disdrometers greatly reduces the frequency of
occurrence of hydrometeors falling with vf < vt (Figure 5c), or greatly improves agreement
with precipitation rates sampled with an RG (Figure 5b).
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Figure 5. (a) Instruments deployed in upstate New York. (b) Scatterplot of hourly precipitation (PPT)
from the disdrometer operated without the wind shield (Dis wo/shield) versus the disdrometer
with the wind shield (Dis w/shield) (filled symbols) and the rain gauge (RG) (open symbols) on
logarithmic and linear axes. Symbols are scaled with, and colored by, the prevailing wind speed
at 10 m AGL (left-hand panel) and by the fastest wind gust (right panel). (c) Joint probability of
hydrometeor diameter (D) and fall velocity (vf) from Dis w/shield. White line indicates terminal fall
velocity (vt) as a function of D from Gunn and Kinser [110]. Yellow lines show the ±50% bounds
on vt that may indicate erroneous observations [111]. (d) Heatmap of the joint probability of no
precipitation or precipitation from the two disdrometers.

There remains an urgent need for a comprehensive instrument inter-comparison
experiment, openness from instrument manufacturers regarding hardware settings, and the
development of best practice for instrument deployment and data processing to enhance
the TRL for the prediction of long-term LEE and the nowcasting of erosive events for
erosion-safe mode of implementation.

NWP models are sophisticated and skillful tools for weather forecasting and climate
projections. However, simulated precipitation occurrence and intensity remain less skillful
than other atmospheric properties and are highly dependent on model grid [112]. The
PIRT analysis also identified the need for improvements in the numerical simulation of
precipitation and HSD. These issues have long been recognized within the atmospheric
science modeling community [113] and there are many parameterizations available to
represent cloud, precipitation, and convection processes from scales of millimeters to
kilometers, which can yield very different precipitation rates (see example in Figure 6).
Most NWP models use bulk microphysics schemes and employ gamma distributions for
cloud and hydrometeor distributions [114–118]. Binned (or classed) microphysics schemes
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resolve the HSD at higher computational cost and improved flexibility [119], but different
schemes yield widely varying hydrometeor characteristics [120] and they do not always
out-perform bulk schemes in terms of the fidelity of RR [121]. Most modeling studies
post-process simulated RR using empirical relationships between near-surface HSD and
simulated RR [122]. Simulated hail production is also very sensitive to the pre-existing
aerosol, frozen hydrometer density, and other factors influencing hydrometer diameters
and fall velocities [123]. The land surface scheme employed and soil moisture used to
initialize numerical simulations also influence precipitation simulation fidelity [124].

Energies 2024, 17, x FOR PEER REVIEW 14 of 28 
 

 

NWP models are sophisticated and skillful tools for weather forecasting and climate 
projections. However, simulated precipitation occurrence and intensity remain less skill-
ful than other atmospheric properties and are highly dependent on model grid [114]. The 
PIRT analysis also identified the need for improvements in the numerical simulation of 
precipitation and HSD. These issues have long been recognized within the atmospheric 
science modeling community [115] and there are many parameterizations available to rep-
resent cloud, precipitation, and convection processes from scales of millimeters to kilome-
ters, which can yield very different precipitation rates (see example in Figure 6). Most 
NWP models use bulk microphysics schemes and employ gamma distributions for cloud 
and hydrometeor distributions [116–120]. Binned (or classed) microphysics schemes re-
solve the HSD at higher computational cost and improved flexibility [121], but different 
schemes yield widely varying hydrometeor characteristics [122] and they do not always 
out-perform bulk schemes in terms of the fidelity of RR [123]. Most modeling studies post-
process simulated RR using empirical relationships between near-surface HSD and simu-
lated RR [124]. Simulated hail production is also very sensitive to the pre-existing aerosol, 
frozen hydrometer density, and other factors influencing hydrometer diameters and fall 
velocities [125]. The land surface scheme employed and soil moisture used to initialize 
numerical simulations also influence precipitation simulation fidelity [126]. 

It has been previously shown that WRF exhibits some skill for forecasting heavy pre-
cipitation and hail and the occurrence of high wind speeds, but the joint occurrence of 
heavy precipitation and high wind speeds and the simulation of hail diameter continue 
to lack the fidelity necessary to make integrative robust assessments of erosion potential 
or short-term forecasts of highly erosive events for erosion safe-mode operation [77,78]. 

 
Figure 6. Spatial average. (a) Precipitation rate and (b) accumulated precipitation from WRF simu-
lations (dx = 1 km) of an intense precipitation event during March 2017 over a region with many 
wind turbine assets [127]. The simulation [128] is performed in a short-term forecasting mode as 
would be used for predicting the need for erosion safe-mode operation of wind turbines. Time series 
denote simulations with five different microphysics schemes: Milbrandt–Yau (MILB), Morrison 
(MORR), Thompson aerosol aware (THOMA), WRF double-moment seven class (WDM7), and 
NSSL, plus RADAR (NEXRAD) observations. (c) The domain over which the spatial averaging is 
performed. Black triangle indicates Dallas Fort Worth, black lines denote the state boundaries of 
Texas, Oklahoma, and Arkansas. 

The improved representation of hydroclimatic conditions with numerical models, 
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initiatives within the atmospheric science community including the World Climate Re-
search Programme Global Precipitation Experiment lighthouse activity [129]. Machine 
learning climate emulators are also being developed that seek to bridge the gap between 
the scales resolved by NWP models and precipitation at the local level [130]. Leveraging 
such initiatives can, and will, benefit the wind energy industry and enhance TRLs of LEE 
mitigation options. However, the specific need for model and measurement fidelity for 
precipitation rates and HSD particularly at high wind speeds is, to some degree, specific 

Figure 6. Spatial average. (a) Precipitation rate and (b) accumulated precipitation from WRF
simulations (dx = 1 km) of an intense precipitation event during March 2017 over a region with
many wind turbine assets [125]. The simulation [126] is performed in a short-term forecasting mode
as would be used for predicting the need for erosion safe-mode operation of wind turbines. Time
series denote simulations with five different microphysics schemes: Milbrandt–Yau (MILB), Morrison
(MORR), Thompson aerosol aware (THOMA), WRF double-moment seven class (WDM7), and NSSL,
plus RADAR (NEXRAD) observations. (c) The domain over which the spatial averaging is performed.
Black triangle indicates Dallas Fort Worth, black lines denote the state boundaries of Texas, Oklahoma,
and Arkansas.

It has been previously shown that WRF exhibits some skill for forecasting heavy
precipitation and hail and the occurrence of high wind speeds, but the joint occurrence of
heavy precipitation and high wind speeds and the simulation of hail diameter continue to
lack the fidelity necessary to make integrative robust assessments of erosion potential or
short-term forecasts of highly erosive events for erosion safe-mode operation [75,76].

The improved representation of hydroclimatic conditions with numerical models,
the scoping of uncertainty, and fundamental model improvements are a focus of multiple
initiatives within the atmospheric science community including the World Climate Research
Programme Global Precipitation Experiment lighthouse activity [127]. Machine learning
climate emulators are also being developed that seek to bridge the gap between the scales
resolved by NWP models and precipitation at the local level [128]. Leveraging such
initiatives can, and will, benefit the wind energy industry and enhance TRLs of LEE
mitigation options. However, the specific need for model and measurement fidelity for
precipitation rates and HSD particularly at high wind speeds is, to some degree, specific to
the wind energy community. Effort should be invested in a detailed NWP verification and
validation (V&V) framework that is specifically focused on the requirements of the wind
energy community to advance the TRL for model-based prediction of LEE meteorological
drivers. This is a focus of the understanding atmospheric impacts on wind turbines for
better efficiency (AIRE) project (https://aire-project.eu, e.g., accessed on 10 August 2024).

3.2. Phenomena/Processes Given Tier 1 Priority Within the Damage Detection and
Quantification Theme

This PIRT process resulted in one phenomenon/process being given tier 1 priority
within the damage detection and quantification theme: translating water impingement to

https://aire-project.eu
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material loss/stress (e.g., metrics: kinetic energy, Springer–ADF, VN curves). Although
this topic could legitimately be included under Theme 3—material response, the specific
theme under which it was listed is likely not a critical determinant of the PIRT rating. As
described above, computing the accumulated kinetic energy (AKE) of collisions between
falling hydrometeors and rotating blades through time is trivial presuming adequate
data regarding the hydrometeors and hub-height wind speed are available at high time
resolution. However, AKE does not directly translate to material damage.

Springer’s model uses the material properties of the blade and coating and the hy-
drometeor impact number, diameter, velocity, and impact angle to estimate a distance to
failure or the end of the incubation period for coating wear for each hydrometeor diameter
that combined with Miner’s rule is used to estimate ADF [94]. However, Springer’s model
is not very mechanistically defined and the parameter estimates are highly uncertain [66].

As described above, many RET experiments are confined to a fairly narrow range
of droplet sizes and can generate only liquid droplets. However, actual precipitation
comprises an ensemble of multiple hydrometeor diameters. A recommended practice
from DNV [129] considers only one droplet diameter (D = 2.38 mm) that naturally will not
reflect the range of observed hydrometeors. Indeed, based on data from the US Southern
Great Plains, where deep convection and intense precipitation is relatively common [14],
the mass-weight hydrometeor mean diameter was ≥2.38 mm during only 6% of 1 min
precipitation periods. Further, to achieve damage results in a reasonable time (i.e., to
accelerate erosion), RETs are operated at higher closing velocities than is representative
of real operating conditions. The resulting VN curves are then extrapolated to derive
estimates at lower vc of the number of impacts at a given diameter that would yield
damage. Testing viscoelastic coatings at very high closing velocities may result in rain
erosion testers underestimating coating or LEP durability because wind turbines frequently
operate at lower tip speeds. A comprehensive rain erosion test with multiple droplet sizes
underlines the need for further research on the derivation of the VN curves from RETs [130].
More detail is given in Section 3.3.

Other phenomena/processes in the damage detection theme that are characterized as
tier 2 priority for research relate to the accuracy of damage estimates. The use of drones
and robots for blade inspection is becoming more routine, particularly for larger wind
turbines and offshore wind farms and potentially decreases costs/time/risk of injury to
technicians [131]. The full automation of damage detection data derived using such tools
is leveraging advanced machine learning (ML) image processing tools [62,132]. Further
innovations in this field include the construction of digital twins using high-resolution
topographic leading-edge roughness (LER) data from operating/decommissioned blades
that can be analyzed aerodynamically using 3D computational fluid dynamics (CFD) or
wind tunnels [133].

Efforts to commercialize damage detection solutions are ongoing (e.g., using thermal
imaging [134], laser profilometry [135], or gloss measurement [136]) implying relatively
high TRLs, even as research is being conducted to evaluate efficacy as a function of damage
severity and extent [137].

3.3. Phenomena/Processes Given Tier 1 Priority Within the Material Response Theme

This PIRT analysis identified two phenomena within Theme 3, material response
as tier 1 priority for research that links to the usefulness of RETs, and specifically their
representation of atmospheric conditions including the hydrometeors phase (e.g., rain and
hail), size distributions and collision velocities [12], and whether accelerated lab tests repre-
sent the pre-stressing of blade materials that enhances hydrometeor erosion of the leading
edge [138]. These concerns also link to the second tier 1 research priority: methodologies to
translate lab experimental data (incl. rain erosion testers) to field conditions and failure
modes (see Section 3.2).

Important new research is testing multiple key aspects of the translation of RET to real-
world conditions. For example, RETs tend to operate with the continuous bombardment
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of droplets, while in the real-world precipitation it is discontinuous. Experiments with
a pulsating jet erosion tester have evolved evidence that the duration of time between
precipitation events may play a role in dictating the number of droplet impacts required to
reach the end of the incubation time [139]. Recent RET tests performed with and without
UV exposure have found that UV weathering reduced the LEE coating life by about 30%,
which greatly influenced the resulting VN curve parameters [140].

Experimental technologies have an important role in projecting damage emergence
and progression, but mechanistically sound numerical models can permit more diagnostic
analyses and sampling across a broader spectrum of conditions. An important source
of uncertainty in such numerical models is that the precise composition of LEPs and/or
coating is proprietary. In addition, the temperature and strain rate sensitivity of the flow
stress are either ignored in modeling or at best implemented with empirical constitutive
equations. This may lead to significant deviations from reality considering the adiabatic
nature of hydrometeor impacts deforming surface layers at relatively high strain rates [141].

More sophisticated and explicit models such as finite element (FE) models of mul-
tiple liquid impact on multilayered viscoelastic materials take into account microscale
material structure and porosity [84,142] and are preferable to empirical or semi-empirical
models. However, they are relatively computationally demanding and require information
regarding a range of material properties and behaviors that can be difficult to acquire. The
computational cost is amplified if all possible combinations of hydrometeor D and vc are
to be included in coating lifetime estimations. Thus, an emerging area of research is the
construction of ML emulators conditioned using the output from numerically sophisticated
models but taking the form of considerably faster closed-form architectures [143]. Such
emulators can be used to more rapidly and efficiently evaluate the uncertainty space. An
example is the incorporation of an ML model trained by the output of FE simulations of the
spatial and temporal evolution of the stress field in the coating for various impact speeds
and hydrometeor diameters (see the schematic in Figure 7). To illustrate this potential, a
surrogate model based on a neural network was trained to make predictions for the peak
stresses in the coating layer. A relatively small number of FE simulations was used to
generate training data for droplet diameters (D) of 0.5 to 4 mm, and impact speeds (vc)
between 80 and 90 ms−1. A neural network surrogate model was trained to predict peak
von Mises stresses at each point in the coating as a function of D and vc. An independent
set of FE simulations was used to evaluate the surrogate model predictions (Figure 8). The
ML predictions capture the topology of the peak stress contour, but the peak values show
an error of ~10% relative to independent FE simulations. Building a larger suite of training
simulations would likely aid in building a more robust surrogate model.

In principle, the workflow shown in Figure 7 could be expanded such that wind
speed, rain intensity, and HSDs measured or modeled for any location can be combined
with the surrogate model to obtain coating stresses for all possible combinations of impact
parameters in an analogous manner to their use with the Springer model. The properties
of the coating material could also be used as input to the machine learning model, and in
principle this workflow can be extended to estimate not only the lifetimes of coatings, but
also the levels of surface damage for estimating AEP losses.

While the use of ML-based surrogate models shows great promise, the response of
viscoelastic polyurethane-based coatings depends on the loading rate, temperature, and
the level of experienced strain. A more thorough experimental characterization of these
materials is required, which includes high- and low-rate uniaxial data for wide strain
ranges, dynamic mechanical analysis, cyclic loading–reloading, and volumetric strain
measurements. Data from RET experiments can aid in determining parameters related to
the fatigue behavior of coatings and to enhance the accuracy of predictions. Improvements
in experimental procedures related to RET are therefore also highly valuable.
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impact axis (x/r = 0) to a distance equal to the droplet radius r (x/r = 1) based on the finite element
(FE) simulations, (left) and the predictions of the neural network surrogate model (NN) (right) for
two different hydrometeor diameters (d) and closing velocities (u).
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3.4. Phenomena/Processes Given Tier 1 Priority Within the Aerodynamics Theme

Finally, three phenomena/processes were identified as tier 1 priority in the aerody-
namic implications theme: (a) Quantification of damage and surface roughness progression
through time. This links strongly to Theme 2—damage detection. (b) Attribution of
AEP loss to LEE (via effective surface roughness). (c) Optimization of damage repair
solution/timing.

The quantification of wind turbine power and AEP losses due to LEE typically relies
on blade force coefficient data obtained with wind tunnel testing or simulations with com-
putational fluid dynamics (CFD) models [144,145]. In both cases, the geometry of damage
and corresponding surface roughness at any time between installation and leading-edge
resurfacing are key to achieving reliable estimates of the blade performance degradation.
For moderate to intermediate LEE, which typically corresponds to damage of the thin
external protection system of the leading edge (e.g., coating), the effects of roughness can
be modeled by the means of the equivalent sand grain roughness [146]. The equivalent
roughness height, yielding the same wall shear stress as that achieved with the observed
roughness, can be obtained by using geometry, experimental data, or very high-fidelity
CFD [147]. Their use for LEE applications, however, is associated with uncertainty, in part
due to the difficulty of measuring blade roughness with sufficient resolution. One of the
aims of the leading-edge roughness categorization (LERcat) efforts is to reduce this uncer-
tainty [76]. When LEE becomes severe, with damage also to the leading-edge composite
material, the sand grain model is no longer applicable, and the erosion geometry needs
to be resolved [148]. The above highlights the importance of acquiring, with sufficient
resolution, the depth and surface map of LEE and thus links to new innovations in damage
characterization mentioned under Theme 2.

Once erosion topographies are acquired with adequate geometric resolution, ML can
also play a key role in developing blade predictive maintenance frameworks by providing
erosion aerodynamics and resulting AEP losses, as demonstrated with the AEP loss predic-
tion system (ALPS) [144]. Determining the LEE-induced blade performance degradation
for each erosion topography encountered in operation would require numerous lengthy
CFD analyses and specialized expertise for each wind turbine assessment, a cost increased
by the large number of turbines in a wind farm and the potentially high temporal frequency
of these assessments in the wind farm lifetime. An initial (one-off) execution of many
CFD simulations corresponding to many diverse erosion topographies can be used to train
the fast ML metamodels that can be used to quickly determine blade force coefficients
for AEP loss assessment. Preliminary work, shown in Figure 9 [144], has demonstrated
the high reliability of fast ML metamodels for predicting lift coefficient (cl) and drag co-
efficient (cd) of eroded blade sections, allowing the ML models to be used for AEP loss
assessment [148,149]. More development work is needed in this area to generalize these
ML approaches, enable them to consider even wider LEE patterns observed in opera-
tion, and consider the variability of the nominal blade geometry among different wind
turbine classes.

Optimizing the timing of blade leading-edge repair was identified as an important
phenomena/process in the PIRT. The optimization of repair at any operating wind farm
depends on factors such as wind turbine age, damage severity, cost of electricity, and
accessibility. The considerations used by commercial wind farm owner/operators regarding
repair decisions are usually considered proprietary and thus are held in confidence. Thus,
information from WEICan is briefly presented below to illustrate the process by which
repair decisions and LEP application were made and the results of those actions. WEICan
owns and operates five 2 MW turbines on a coastal, high-wind site with turbines 1–4 being
located on an escarpment and experiencing a very similar wind climate [150]. All wind
turbines at WEICan have exhibited advanced levels of LEE since commissioning in 2013.
WEICan have chosen to initiate repair measures prior to “moderate” or “severe” levels
of erosion, and indeed before there was significant mass loss or clear detection via power
curve degradation or acoustic tracking [151], due to factors such as the severity of the
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winter climate which means the O&M window is relatively short, and the remote location
means that access for more extensive O&M is challenging. The two main indications that
trigger WEICan’s decision to carry out a blade repair are as follows:

1. The rapid degradation of LEP. If an LEP product experiences significant peeling and
bubbling within a year, it saves on repair expenses to replace it before the blade is
completely exposed.

2. The first sign of visible fiberglass. The more fiberglass is eroded away, the more blade
preparation work is required before repairs. With light erosion, only sanding and
buffing of the surface is required before reapplying the LEP, which takes about half a
day per blade. With moderate to heavy erosion, the blade must be sanded, built back
into shape with additional fillers and fiberglass before reapplying the LEP product,
which can take 1.5 days to 2 days per blade. Therefore, repairing blades at the first
sign of visible fiberglass saves time and cost.
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Figure 9. (Top): Eroded blade section force coefficients (lift (Cl) and drag (Cd)) for varying angles
of attack (bottom axis) from geometry-resolving CFD (‘CFD’) and ML models (‘ML’) trained using
the metadata of the erosion topography (curve labeled ‘nom’. denotes nominal section performance
curves) [126]. Bottom: offshore (left) and onshore (right) AEP losses for a multi-MW wind turbine
derived using blade section force coefficients from ML models of type displayed in top plots for broad
patterns and the extent of erosion topographies; ‘Ks’ = equivalent sand grain roughness, ‘nom/ft.’
and ‘scan mean’ denote moderate to intermediate LEE severity, and ‘grv. dmean’ and ‘grv. dmax’
denote severe LEE stages [148].

Initially, the blades on the wind turbines deployed at WEICan had no LEP, only
standard polyurethane paint. In 2014, after LEE was observed visually, the blades were
repaired, and standard polyurethane paint was reapplied. LEE was observed again in 2015.
Since 2016, WEICan has engaged in the testing of five different LEPs, including paints,
tapes, and shells. The first four LEPs were applied from 30 m to 45 m, while the fifth LEP
was applied from 35 m to 45 m, measuring from the root of the blade. Each type of LEP has
specific application instructions which typically require filling, sanding, and cleaning to
achieve a smooth surface, and specific maximum and minimum temperatures and relative
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humidities for curing and drying. Most of the wind turbine blade LEP materials have failed
in one year to two years (Table 2, see example in Figure 4e), which LEP manufacturers
generally have attributed to improper or inadequate surface preparation and installation.
For example, the epoxies or adhesives were not appropriately activated, the surface was
not adequately cleaned, the blade repairs with fillers or coatings ahead of installation were
still curing, the conditions may have been appropriate at the start but were not sustained,
or the skills of the technicians were not adequate. The original blade quality has also been
identified as an important factor impacting LEP failure.

Table 2. Leading-edge protections used, dates applied, and damage and failures observed at WEICan.

Type of LEP Turbine Year Applied, Year
Reapplied

Year Damage
Observed

Types of Damage
Observed

Paint (2 component epoxy) T1, T5 2016, 2017, 2019 2017, 2019, 2021 Pitting, cracking,
peeling, bubbling

Paint (polyurethane) T4 2016, 2017, 2019 2017, 2019, 2021 Pitting, peeling

Tape (2-component
polyurethane) T2 2016, 2017 2017, 2021 Pitting, peeling,

bubbling

Tape (2-component
polyurethane) T3 2016, 2019 2019, 2021 Pitting, peeling,

bubbling

Shell (polyurethane)

T1 2021, 2023 2023 Peeling, bubbling

T2 2022

T3 2022

T4 2021, 2022 2022 Peeling, bubbling

T5 2022

Current leading-edge repair work instructions have many requirements, including
filling, sanding, and cleaning with maximum and minimum temperatures and relative
humidities for curing and drying, as well as wind speed restrictions, depending on the
method used to access the blade. This leads to small windows of time where repair is even
possible and long and expensive repair times. TRLs would be enhanced by simplifying the
repair process so that there are fewer restrictions, and it can be performed more quickly
and economically.

A tier 2 priority in Theme 4 relates to the aerodynamic performance reductions due to
LEP and their efficacy in slowing LEE. Data from the WEICan wind turbines was used in
a decomposition analysis to remove effects due to prevailing meteorology (e.g., changes
in the wind speed distribution before and after application) and isolate the impact of
LEP on wind turbine performance. The results showed minimal to no improvements in
performance due to LEP application and the resulting smoothing of the blade [151]. This is
likely due to the high proportion of time that WEICan’s wind turbines spend operating
at rated power when AEP loss due to LEE is minimum, as well as the fact that WEICan
repairs blades before any reduction in performance is observed.

Ultimately, decision-making with regard to LEE at WEICan relies on information from
many of the tier 1 and tier 2 Themes: the existing and expected progression of damage, the
resulting AEP reductions, and the impacts of LEP options. The uncertain durability of LEP
options, perhaps resulting from unreliable LEP installation, has been the most substantial
barrier to effective O&M planning for this site.

4. Concluding Remarks and Next Steps

The PIRT presented herein represents the first attempt to collate expert judgments on
research priorities to enhance the TRL for solutions to reduce AEP (and revenue) losses and
wind turbine operation and maintenance costs caused by wind turbine blade LEE. We used



Energies 2024, 17, 6285 22 of 29

a snowball sampling technique to identify possible respondents [81] and had a relatively
small sample size (n < 20). Thus, the results must be considered preliminary. Nevertheless,
the PIRT presented herein yields some important insights and lays the foundation for a
comprehensive PIRT survey of wind energy experts that will be conducted during 2025 via
the International Energy Agency Wind Energy (IEA) Technology Collaboration Programme
(TCP) Task 46: Leading-Edge Erosion.

PIRT analyses are valuable because they allow the systematic identification of phe-
nomena/processes of importance and that require further research to enhance TRLs or
reduce safety risks. However, PIRT analyses are inherently subjective, since they leverage
expert knowledge and judgment [82]. While some have advocated that PIRT methodologies
should be based on literature-based meta-analyses [83], these too are not fully objective
due to inherent biases in publishing [84]. An important advancement of this PIRT analysis
is that the standard deviation of rankings across respondents is captured and presented
to provide quantitative information about the presence or absence of consensus in the
rankings. A divergence of opinions may derive from knowledge gaps due to the trans-
disciplinary nature of a topic or the rapidly evolving nature of a complex topic. Expert
knowledge-based frameworks for research priority identification using PIRT may also not
fully reflect emerging issues. An example of this that was identified in the PIRT but not
given a tier 1 ranking is the possibility of micro-plastic shedding in the ocean environments.
This research topic is being addressed in the PREventing MIcroplastics pollution in SEa
water from offshore wind (PREMISE) project [152]. The emergence of such new topics
strongly advocates for PIRT assessments to be continuously updated to ensure they evolve
as knowledge is advanced.

The PIRT process and discussions summarized above indicate that the TRL for LEE
solutions remains relatively low. However, investment in the priority areas articulated
herein will enhance fundamental understanding and can be used to evolve a robust frame-
work for end-to-end LEE prediction (Figure 7). Investments should be made in building
a robust model V&V framework for each component of such a model chain [153]. Suc-
cessful implementation of such a framework will require the sharing of a range of data
from industrial partners. Needed information includes LEP product material properties,
greater transparency regarding hardware settings in meteorological sensors, and data from
operating wind farms linking the LEE state and the AEP. The end-to-end assessment of
damage as a function of operating climate would also greatly benefit from sharing blade
damage reports/images from operating wind farms for use in the evaluation of location-
specific meteorologically driven LEE predictions [34]. Availability of time histories of
wind turbine Supervisory Control and Data Acquisition (SCADA) data and adequately
resolved LEE topographies for eroded blades will enable faster progress in blade predictive
maintenance technologies.
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Nomenclature

ADF Accumulated Distance to Failure
AEP Annual Energy (electricity) Production
AKE Accumulated Kinetic Energy
CAPEX CAPital EXpenditures
CFD Computational Fluid Dynamics
D Hydrometeor Diameter
Dis Disdrometer
FE Finite Element
HSD Hydrometeor Size Distribution
IEA International Energy Agency
LCoE Levelized Cost of Energy
LEE Leading-Edge Erosion
LEP Leading-Edge Protection
LER Leading-Edge Roughness
LERcat Leading-Edge Roughness categorization
ML Machine Learning
NWP Numerical Weather Prediction
O&M Operations and Maintenance
PIRT Phenomena Identification and Ranking Tables
PPT Precipitation
RET Rain Erosion Tester
RG Rain Gauge
RR Precipitation (or Rain) Rate
SALT Simplified Aerodynamic Loss Tool
SCADA Supervisory Control and Data Acquisition
SD Standard Deviation
TRL Technology Readiness Level
UAV Unmanned Aerial Vehicle
USA United States of America
UV-A Ultraviolet radiation at wavelengths (λ) = 320 and 400 nm
VN curves Velocity–Number of impacts to failure
V&V Verification and Validation
WARERs Whirling Arm Rain ERosion testers
WRF Weather Research and Forecasting
vc Closing velocity
vf Fall velocity
vt Terminal fall velocity
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75. Herring, R.; Domenech, L.; Renau, J.; Šakalytė, A.; Ward, C.; Dyer, K.; Sánchez, F. Assessment of a wind turbine blade erosion

lifetime prediction model with industrial protection materials and testing methods. Coatings 2021, 11, 767. [CrossRef]
76. Maniaci, D.C.; MacDonald, H.; Paquette, J.; Clarke, R. Leading Edge Erosion Classification System. Technical Report from IEA

Wind Task 46 Erosion of Wind Turbine Blades. 2022, p. 52. Available online: https://iea-wind.org/task46/t46-results/ (accessed
on 20 October 2024).

77. Panthi, K.; Iungo, G.V. Quantification of wind turbine energy loss due to leading-edge erosion through infrared-camera imaging,
numerical simulations, and assessment against SCADA and meteorological data. Wind Energy 2023, 26, 266–282. [CrossRef]

78. Saenz, E.; Mendez, B.; Muñoz, A. Effect of erosion morphology on wind turbine production losses. J. Phys. Conf. Ser. 2022,
2265, 032059. [CrossRef]

79. Bak, C. A simple model to predict the energy loss due to leading edge roughness. J. Phys. Conf. Ser. 2022, 2265, 032038. [CrossRef]
80. Özçakmak, Ö.S.; Bretos, D.; Méndez, B.; Bak, C. Determination of annual energy production loss due to erosion on wind turbine

blades. J. Phys. Conf. Ser. 2024, 2767, 022066. [CrossRef]
81. Gaertner, E.; Rinker, J.; Sethuraman, L.; Zahle, Z.; Anderson, B.; Barter, G.; Abbas, B.; Meng, F.; Bortolotti, F.; Skrzypinski, W.; et al.

Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine; NREL/TP-5000-75698; National Renewable Energy Laboratory:
Golden, CO, USA, 2020. Available online: https://www.nrel.gov/docs/fy20osti/75698.pdf (accessed on 20 October 2024).

82. Malik, T.H.; Bak, C. Challenges in Detecting Wind Turbine Power Loss: The Effects of Blade Erosion, Turbulence and Time
Averaging. Wind Energy Sci. Discuss. 2024, 2024, 1–23. [CrossRef]

83. Han, W.; Kim, J.; Kim, B. Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy
production of wind turbines. Renew. Energy 2018, 115, 817–823. [CrossRef]

84. Mishnaevsky, L., Jr.; Tempelis, A.; Kuthe, N.; Mahajan, P. Recent developments in the protection of wind turbine blades against
leading edge erosion: Materials solutions and predictive modelling. Renew. Energy 2023, 118966. [CrossRef]

85. Verma, A.S.; Yan, J.; Hu, W.; Jiang, Z.; Shi, W.; Teuwen, J.J. A review of impact loads on composite wind turbine blades: Impact
threats and classification. Renew. Sustain. Energy Rev. 2023, 178, 113261. [CrossRef]

86. Dashtkar, A.; Johansen, N.F.-J.; Mishnaevsky, L., Jr.; Williams, N.A.; Hasan, S.W.; Wadi, V.S.; Silvello, A.; Hadavinia, H.
Graphene/sol–gel modified polyurethane coating for wind turbine blade leading edge protection: Properties and performance.
Polym. Polym. Compos. 2022, 30, 09673911221074197. [CrossRef]

87. Major, D.; Palacios, J.; Maughmer, M.; Schmitz, S. Aerodynamics of leading-edge protection tapes for wind turbine blades. Wind
Eng. 2021, 45, 1296–1316. [CrossRef]

88. Kyle, R.; Wang, F.; Forbes, B. The effect of a leading edge erosion shield on the aerodynamic performance of a wind turbine blade.
Wind Energy 2020, 23, 953–966. [CrossRef]

89. Bera, P.; Lakshmi, R.; Pathak, S.M.; Bonu, V.; Mishnaevsky, L., Jr.; Barshilia, H.C. Recent Progress in the Development and
Evaluation of Rain and Solid Particle Erosion Resistant Coatings for Leading Edge Protection of Wind Turbine Blades. Polym. Rev.
2024, 64, 639–689. [CrossRef]

https://doi.org/10.3390/en16062820
https://doi.org/10.3390/ma10111285
https://www.ncbi.nlm.nih.gov/pubmed/29120396
https://doi.org/10.1146/annurev.matsci.35.100303.110641
https://doi.org/10.1002/we.2617
https://doi.org/10.3390/ma15031170
https://doi.org/10.3390/ma10101146
https://doi.org/10.1002/we.2200
https://doi.org/10.5194/wes-3-639-2018
https://doi.org/10.1016/j.compstruct.2020.112096
https://doi.org/10.3390/coatings11060681
https://doi.org/10.3390/en15155593
https://doi.org/10.1177/002199837400800302
https://doi.org/10.3390/coatings11070767
https://iea-wind.org/task46/t46-results/
https://doi.org/10.1002/we.2798
https://doi.org/10.1088/1742-6596/2265/3/032059
https://doi.org/10.1088/1742-6596/2265/3/032038
https://doi.org/10.1088/1742-6596/2767/2/022066
https://www.nrel.gov/docs/fy20osti/75698.pdf
https://doi.org/10.5194/wes-2024-35
https://doi.org/10.1016/j.renene.2017.09.002
https://doi.org/10.1016/j.renene.2023.118966
https://doi.org/10.1016/j.rser.2023.113261
https://doi.org/10.1177/09673911221074197
https://doi.org/10.1177/0309524X20975446
https://doi.org/10.1002/we.2466
https://doi.org/10.1080/15583724.2023.2270050


Energies 2024, 17, 6285 27 of 29

90. Jones, S.M.; Rehfeld, N.; Schreiner, C.; Dyer, K. The Development of a Novel Thin Film Test Method to Evaluate the Rain Erosion
Resistance of Polyaspartate-Based Leading Edge Protection Coatings. Coatings 2023, 13, 1849. [CrossRef]

91. Verma, A.S.; Noi, S.D.; Ren, Z.; Jiang, Z.; Teuwen, J.J. Minimum leading edge protection application length to combat rain-induced
erosion of wind turbine blades. Energies 2021, 14, 1629. [CrossRef]

92. Ansari, Q.M.; Sánchez, F.; Mishnaevsky, L., Jr.; Young, T.M. Evaluation of offshore wind turbine blades coating thickness effect on
leading edge protection system subject to rain erosion. Renew. Energy 2024, 226, 120378. [CrossRef]

93. Katsivalis, I.; Chanteli, A.; Finnegan, W.; Young, T.M. Mechanical and interfacial characterisation of leading-edge protection
materials for wind turbine blade applications. Wind Energy 2022, 25, 1758–1774. [CrossRef]

94. Letson, F.; Pryor, S.C. From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading Edge
Erosion. Energies 2023, 5, 3906. [CrossRef]
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