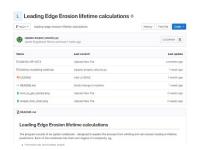


WP 4 deliverable 3

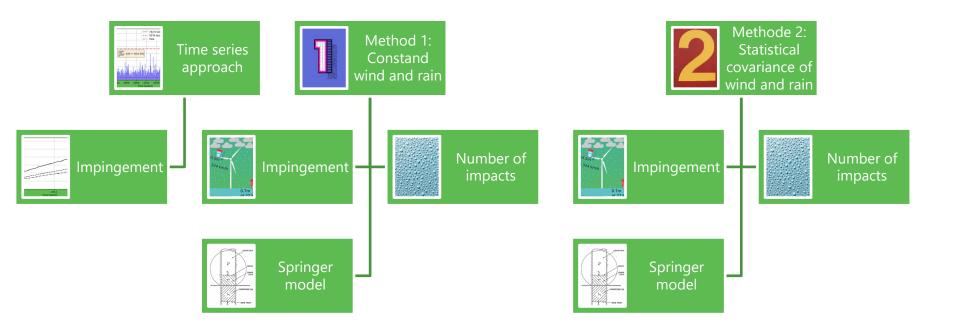
Fitting VN data from rain erosion test data and the potential effects on predicted lifetime


Nicolai Frost-Jensen Johansen Ph.D, Development engineer, DTU Wind

- Python-Jupityr notebook implementation of DNV-GL RP 0573
- Pure VN data driven
- With and Without covariance of wind and rain
- Base implementation of Springer model
- Improved and transparent fitting V or N dependent

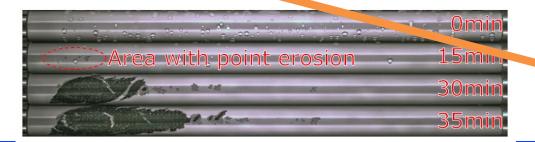
- · Report on the way
- · Code is on gitlab.

Whirling arm RET is the SoTA LAB test for erosion


- Our machine at DTU installed this year 2024 is machine nr 15
- At least 2 more where install this year

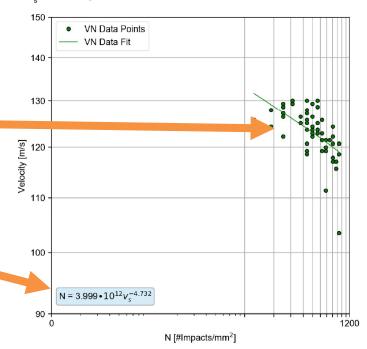
Current extend of the models

Example data from commercially analysed RET data following DNV-GL RP 0171



- RET is expensive
 - Single test cost starting at about 3-4000€
 - Accelerated speed single run for initial screening not uncommon
- Line is V dependent

•
$$N = 717 * 10^{40} * v^{-19}$$


Equation is N dependent

•
$$N = 4 * 10^{12} * v^{-4.73}$$

10.1.7 Total Incubation

The v_e versus N diagram for end of incubation

Standards for fitting data

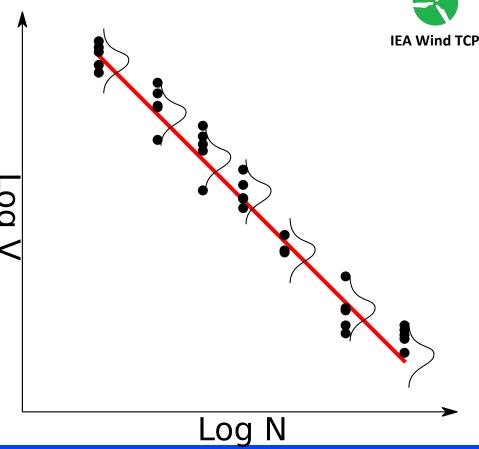
- **ASTM E739-10**
 - Statistical Analysis of Linear or Linearized Stress-Life (S-N)
- DNV-GL RP-0171
 - Testing of rotor blade erosion protection systems
- **DNV-GL RP-0573**
 - Evaluation of erosion and delamination for leading edge

protection systems of rotor blades

- test results in the form of a VN curve for one man droplet diameter d
- N drops per unit area should be the dependent variable
- linear regression in a logarithmic- logarithmic representation, resulting in the VN curve above which 50% of the population is expected to lie
- slope -m of the VN curve from linear regression
- statistical treatment to obtain the characteristic VN curve above which 95% of the population is expected to lie with a 95% confidence according to /3/ or ASTM E739
- compute the modified strength, S_{ec} , by choosing a point from the fit 95%/95% VN log-log equation and equating the chosen value N_i to the same value of N in the Springer equation calculated using the chosen value of v:

$$N = N_s \left(\mathbf{v}, d \right) = \frac{8.9}{d^2} \cdot \left(\frac{S_{ec}}{\overline{\sigma_0}} \right)^m$$

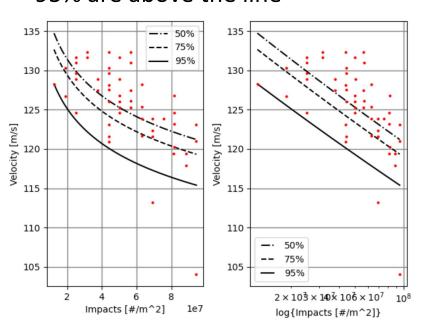
As often used for traditional fatigue S/N curves, the equation may be specified with N as the dependent parameter:

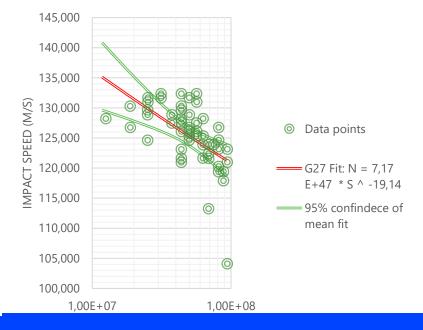

$$N(v_s) = k \cdot v_s^m \left[\frac{\#Impacts}{m^2} \right]$$

3. Terminology

- 3.1 The terms used in this practice shall be used as defined in Definitions E206 and E513. In addition, the following terminology is used:
- 3.1.1 *dependent variable*—the fatigue life *N* (or the logarithm of the fatigue life).
 - 3.1.1.1 Discussion—Log (N) is denoted Y in this practice.
- 3.1.2 independent variable—the selected and controlled variable (namely, stress or strain). It is denoted X in this practice when plotted on appropriate coordinates.

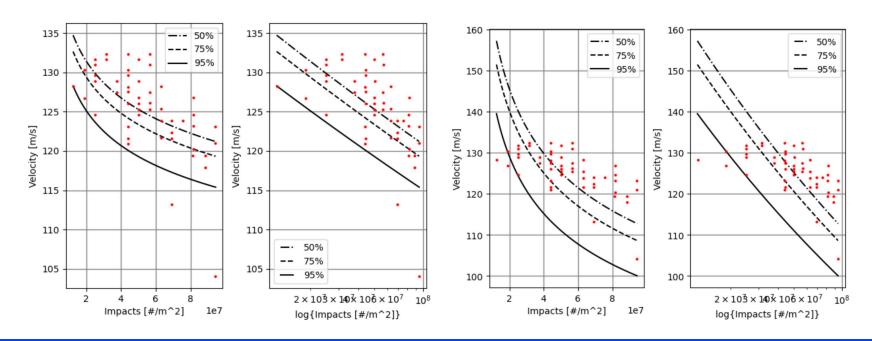
ASTM-E739-10


- S is the **Dependent** variable
 - S is is observed at failure position
- N is the **Independent** variable
 - N is know from the inspection interval
- Data is vertically distributed
 - Discreet sampling interval
 - 3 blades
 - Repeated test
 - Distribution is vertical



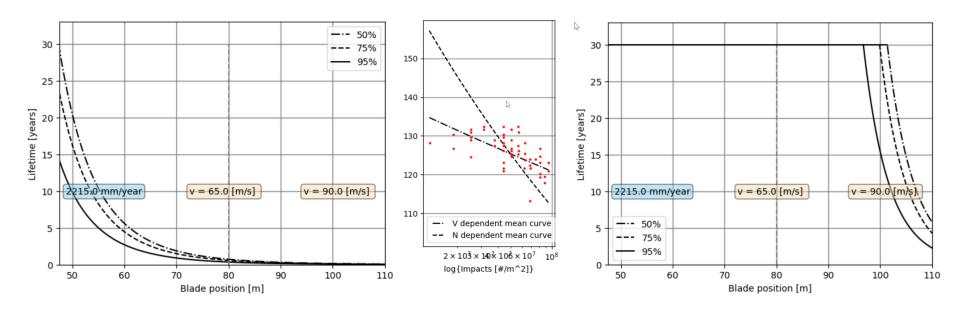
New data driven method

• 95% are above the line



ASTM E739-10

Fitting 95/95 confidence intervals



The influence on predicted lifetime

 N – dependent fitting lifetime lifetime V- depended

Phase 2 WP4

- 4.1 Large-scale comparison and round-robin
- 4.2 RETs under different climatic conditions and effect of droplet size and impact rate on coating lifetime.
- 4.3 Impact of microplastics emissions from erosion.
- 4.4 Incorporation of weathering into RET protocol.
- 4.5 Design of specimens with predefined defects. Objective: Develop a standard method for introducing predefined defects into RET specimens,