Services

Task 46 Results

Find more information about our publications and results here

June 2025:  Wind Energy Science Conference (WESC) 2025 will host a mini-symposium in Theme 3 Aerodynamics, Aeroelasticity and Acoustics. Title of the mini-symposium: Leading Edge Erosion: An Aerodynamic Perspective https://wesc2025.eu/themes/ms3-02-leading-edge-erosion-an-aerodynamic-perspective organised jointly by IEA Task 46, IEA Task 47 and EUDP LERCat project. See the WESC website for abstract deadlines and venue.

6th International Symposium on Leading Edge Erosion of Wind Turbine Blades, 4-6 February 2025 IEA-Task46-6thSymp-LEE-6Feb2025-Hasager

Results from two surveys (19 September 2024 and 31 May 2022) IEA-task46-survey-results

Public webinar, 5th December 2014. Erosion of Wind Turbine Blades: Recent Results and Outlook to the Future in IEA Task 46. Program:  IEA-Task46-webinar-5December2024-program-v2

WP1 presentation WP1-Webinar_Dec2024

WP2 presentation WP2_Webinar_Dec2024

WP3 presentation WP3_Webinar_Dec2024

WP4 presentation WP4-Webinar_Dec2024

Public seminar, 19 September  2024, Albuquerque, USA, Leading Edge Erosion Special Session. Agenda IEA-special-session-agenda

5th International Symposium on Leading Edge Erosion of Wind Turbine Blades, 6-8 February 2024 IEATask46-5thSymp7Feb2024-intro-WP2-WP3-WP4-WP5

Public webinar, 4th December 2023. Agenda: IEATask46-Webinar-4Dec2023-program

IEA-Task46-Erosion-WP1-Webinar-4Dec2023

IEA-Task46-Erosion-WP2-Webinar-4Dec2023

IEA-Task46- Erosion-WP3-Webinar-4Dec2023

IEA-Task46-Erosion-WP4-Webinar-4Dec2023

IEA-Task46- Erosion-WP5-Webinar-4Dec2023

Public webinar, 31st May 2022. Agenda
Webinar

3rd International Symposium on Leading Edge Erosion of Wind Turbine Blades – Online event, DTU, Roskilde, Denmark, February 2022.

Prieto, R., Hasager, C., Pryor, S., Veraart, M., Maniaci, D., Bech, J. I., Rahimi, M., Sánchez López, F., & Holst, B. (2022). IEA Wind Task 46: Erosion of Wind Turbine Blades. Sound/Visual production (digital) https://orbit.dtu.dk/en/publications/iea-wind-task-46-erosion-of-wind-turbine-blades

IEA Task 46 Annual Progress Report 2024 Task 46 Annual progress report 2024

IEA Task 46 Annual Progress Report 2023 Task 46 Annual progress report 2023

Services
Services

Reports

WP2.1+WP2.2 Pryor, S.C., Barthelmie, R.J., Cadance, J., Dyer, K., Hasager, C., Herring, R., Kral, S.T., Prieto, R., Reuder, J., Rodgers, M., Veraat, M. (2022). Atmospheric drivers of wind turbine blade leading edge erosion: Hydrometeors. Technical Report

WP2.3+WP2.4+WP2.5 Pryor, S.C., Barthelmie, R.J., Campobasse, S., Dellwik, E., Hannesdóttir, Á., Hasager, C., Kral, S.T., Reuder, J., Rodgers, M., Veraat, M.  (2023). Atmospheric drivers of wind turbine blade leading edge erosion: Ancillary variables. Technical Report

WP2.6 Pryor, S.C., Barthelmie, R.J., Hannesdóttir, Á. (2025). A roadmap for producing wind turbine blade coating leading edge erosion atlases: Preliminary results. IEA_Wind_Task_46_WP2.6-RoadmapErosionAtlases

WP2.7 Dellwik, E., Pryor, S.C., Hasager, C.B., Hannesdóttir, Á., Barthelmie, R.J., Reuder, J., Rodgers, M., Sanderson, R., Norton, H., Tanaka, M., Ushio, T. (2025). Report on measurements of LEE drivers including metrology development and prospects for establishing ‘super sites’ for instrument testing the status of deployed measurement techniques. IEA_Wind_Task_46_WP2.7-Precipitation-measurement

WP2.8 Pryor, S.C., Barthelmie, R.B., Zhou, X. (2025). A V&V framework for numerical simulations of LEE drivers: Preliminary results. IEA_Wind_Task_46_WP2.8_verification and validation framework

WP3.1 Maniaci, D.C., Meyer Forsting, A., Barlas, A., Bak, C., Olsen, A.S. (2025). Model to predict annual energy production loss based on blade erosion class. IEA_Wind_Task_46_WP3.1_AEP_Loss

WP3.2 Maniaci, D.C., MacDonald, H., Paquette, J., Clarke, R. (2023). Leading Edge Erosion Classification System. IEA Wind Task 46-Erosion Classification System

WP3.3 Castorrini, A., Campobasso, M.S. (2025). Approaches for droplet impingement computation.  IEA_Wind_Task_46_WP3.3-Droplet-impingement

WP3.4 Hasager, C. Bech, J.I., Maniaci, D.C. (2025). Potential for erosion safe operation. IEA_Wind_Task46_WP3.4-Potential for erosion safe operation

WP3.5a Maniaci, D.C., Olsen, A.S., Bak, C., Meyer Forsting, A. (2025). Accuracy of LEE performance loss model based on field observations. IEA_Wind_Task_46_WP3.5a_FieldObs-of-AEP-loss

WP3.5b Campobasso, M.S., Castorrini, A., Bretos, D., Mendez, B., Maniaci, D.C., Theron, J.N., Meyer Forsting, A., Sørensen, N.N., Vimalakanthan,K. (2025). Validation of the Predictive Capabilities of Computational Aerodynamics Codes to Assess Eroded Blade Performance: First Aerodynamic Benchmark. IEA_Wind_Task_46_WP3.5b_Phase1-Aerodynamic-Benchmark

WP4.1 Finnegan W., Bech J.I., (Eds.) (2022). Review on available technologies for laboratory erosion testing. Technical Report

WP4.2 Johansen, N. F.-J. (2023). Erosion failure modes in leading-edge systems. IEA-Wind_Task46_WP4.2-Erosion-failure-modes-in-leading-edge-systems

WP4.3 Simon, J. E. and Johansen, N. F.-J. (2024). Rain erosion test data analysis, damage accumulation and VN curves. IEA-Task46-D4.3-VN-curves

WP4.4 Johansen, N. F.-J. and Nash, J. (2025) Pre-evaluation of test specimen. IEA_Wind_Task_46-4.4-Pre-evaluation-of-specimen

WP4.5 Johansen, N.F.-J., Weinhold, A., Tanaka, M. (2025). Test aluminum data analysis, damage accumulation and VN curves. IEA_Wind_Task_46_4.5-RET-aluminum

WP4.6 Teuwen, J., Johansen, N.F.-J., Bech, J. I., Sánchez, F. (2025). Simple laboratory test. Mechanical characterization of LEP materials. IEA_Wind_Task_46_D4.6-Simple-lab-testing

WP5.1 Sánchez, F. and Hao, H. (Eds.) (2025). Review and assessment and review of erosion damage models based on fundamental material properties and DNV-GL-RP0573. IEA_Wind_Task_46_WP5.1_Damage models based on fundamental material properties

WP5.2 Sánchez, F. (Ed.) (2025). Microstructure and macrostructure material analysis for the erosion damage progression development based on different accelerated rain erosion testing rigs. IEA_Wind_Task_46_Report5_3_Microstructure and macroscopic material properties

WP5.3 Sánchez, F. (Ed.) (2025). Use of in-field turbine blades inspection data for the modelling of the rain erosion damage initiation. IEA_Wind_Task_46_WP5.3_ModellingFromInspectionData

Services
ServicesServices
Services

Journal Papers

Aihara, A. Tanaka, M., & Fujisawa, N. (2024). Influence of surface curvature on the impact force of water droplet. Journal of Applied Physics 136 (11)

Antoniou, A., Dyer, K., Finnegan, W., Herring, R., Holst, B., Bech, J. I., Katsivalis, I., Kutlualp, T., Mishnaevsky, L., Šakalyte, A., Sánchez, F., Teuwen, J., & Young, T. (2022). Multilayer leading edge protection systems of wind turbine blades: A review of material technology and damage modelling. In ECCM 2022 – Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability (Vol. 5, pp. 97-104). École Polytechnique Fédérale de Lausanne. https://research.tudelft.nl/en/publications/multilayer-leading-edge-protection-systems-of-wind-turbine-blades

Caboni, M., Slot, H.M., Bergman, G., Wouters, D.A.J., & Meijer, H.J.V.D.M. (2024). Evaluation of wind turbine blades’ rain-induced leading edge erosion using rainfall measurements at offshore, coastal and onshore locations in the netherlands. Journal of Physics 2767. https://iopscience.iop.org/article/10.1088/1742-6596/2767/6/062003/pdf

Castorrini, A., Barnabei, V.F., Domenech, L., A.Šakalyté, Sánchez, F., & Campobasso, M.S. (2024). Impact of meteorological data factors and material characterization method on the predictions of leading edge erosion of wind turbine blades. Renewable Energy https://doi.org/10.1016/j.renene.2024.120549

Hannesdóttir, Á., Dellwik, E., & Hasager, C. B. (2024). Prediction of rain erosion damage progression using disdrometer rain data: The importance of liquid water content. In The Science of Making Torque from Wind (TORQUE 2024): Measurement and testing Article 042024 IOP Publishing. https://doi.org/10.1088/1742-6596/2767/4/042024

Hannesdóttir, Á., Kral, S. T.,  Reuder, J., & Hasager, C.B. (2024). Rain erosion atlas for wind turbine blades based on ERA5 and NORA3 for Scandinavia, Results in Engineering, Volume 22, 2024, https://doi.org/10.1016/j.rineng.2024.102010.

Hao, H., Domenech, L., & Sánchez, F. (2024). Modeling Rain Erosion Surface Damage Initiation in Turbine Blades Based on Inspection Data at Wind Farms (December 18, 2024). Available at SSRN: https://ssrn.com/abstract=5062754

Hinzmann, C., Johansen, N. F.-J., Hasager, C. B., & Holst, B. (2024). Failsafe layer for wind turbine blades: Erosion protection of glass fiber composite through nanodiamond-treated flax composite top layer. Composites Part B: Engineering283, Article 111584. https://doi.org/10.1016/j.compositesb.2024.111584

Hinzmann, C., Johansen, N. F.-J., Hasager, C. B., & Holst, B. (2024). Towards greener wind power: Nanodiamond-treated flax fiber composites outperform standard glass fiber composites in impact fatigue tests. Composites Part A: Applied Science and Manufacturing186, Article 108342. https://doi.org/10.1016/j.compositesa.2024.108342

Letson F. & Pryor S.C. (2023). From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading Edge Erosion. Energies, 16, 3906 https://doi.org/10.3390/en16093906

Kinsley, P., Porteous, S., Jones, S., Subramanian, P., Campo, O., & Dyer, K. (2025). Limitations of Standard Rain Erosion Tests for Wind Turbine Leading Edge Protection Evaluation. Wind5(1), 3. https://doi.org/10.3390/wind5010003

Malik, T. H., & Bak, C. (2024). Full-scale wind turbine performance assessment using the turbine performance integral (TPI) method: A study of aerodynamic degradation and operational influences. Wind Energy Science, 9(10), 2017-2037. https://doi.org/10.5194/wes-9-2017-2024

Malik, T. H., & Bak, C. (2025a). Challenges in detecting wind turbine power loss: the effects of blade erosion, turbulence, and time averaging. Wind Energy Science10, 227-243. https://doi.org/10.5194/wes-10-227-2025

Malik, T. H., & Bak, C. (2025b). Full-scale wind turbine performance assessment: a customised, sensor-augmented aeroelastic modelling approach. Wind Energy Science, 10, 269-291. https://doi.org/10.5194/wes-10-269-2025

Meyer Forsting, A., Olsen, A. S., Sørensen, N. N., & Bak, C. (2023). The impact of leading edge damage and repair on sectional aerodynamic performance. In Proceedings of AIAA SCITECH 2023 Forum Article 0968 Aerospace Research Central (ARC). https://doi.org/10.2514/6.2023-0968

Özçakmak, Ö. S., Bretos, D., Méndez, B., & Bak, C. (2024). Determination of annual energy production loss due to erosion on wind turbine blades. In The Science of Making Torque from Wind (TORQUE 2024): Aerodynamics, aeroleasticity, and aeroacustics Article 022066 IOP Publishing. https://doi.org/10.1088/1742-6596/2767/2/022066

Pryor, S.C., Barthelmie, R.J., Cadence, J., Dellwik, E., Hasager, C.B., Kral, S.T., Reuder, J., Rodgers, M., & Veraart, M. (2022). Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research. Energies, 15, 8553. https://doi.org/10.3390/en15228553

Pryor, S. C., Barthelmie, R. J., Coburn, J. J., Zhou, X., Rodgers, M., Norton, H., Campobasso, M. S., López, B. M., Hasager, C. B., & Mishnaevsky, L., Jr. (2024). Prioritizing Research for Enhancing the Technology Readiness Level of Wind Turbine Blade Leading-Edge Erosion Solutions. Energies17(24), 6285. https://www.mdpi.com/1996-1073/17/24/6285

Pryor, S. C., Coburn, J. J., & Barthelmie, R. J. (2025). Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion. Energies18(2), 425. https://doi.org/10.3390/en18020425

Pryor, S. C., Letson, F. Shepherd, T. & Barthelmie, R. J. (2023). Evaluation of WRF Simulation of Deep Convection in the U.S. Southern Great Plains. J. Appl. Meteor. Climatol., 62, 41–62, https://doi.org/10.1175/JAMC-D-22-0090.1.

Sánchez, F., Hao, H., Domenech, L., Hardalupas, Y., García, V., Charalambides, M., Ibáñez-Arnal, M., Sergis, A., & Taylor, A. M. K. P., (2025). A review and assessment of the rain erosion damage initiation of wind turbine blades leading edge protection systems based on laboratory testing data and industrial recommended practice DNVGL-RP-0573 (March 04, 2025). Available at SSRN: https://ssrn.com/abstract=5165106 or http://dx.doi.org/10.2139/ssrn.5165106

Sánchez, F., Sakályte, A, Anshari,M.,  Wu, C.-Y., Teuven, J., Young, T., Olivares, A., & Domenech, L (2025). Erosion damage progression analysis for wind turbine blade material coatings based on comparison of accelerated rain erosion testing methods and polymer properties. SSRN ssrn-5172335 or http://dx.doi.org/10.2139/ssrn.5172335 

Tempelis, A., Jespersen, K.M., & Mishnaevsky, L., Jr. (2025). Fatigue damage mechanics approach to predict the end of incubation and breakthrough of leading edge protection coatings for wind turbine blades. Int. J. Fatigue 2025, 190, 108617.

Visbech, J., Göçmen, T., Özçakmak, Ö. S., Meyer Forsting, A., Hannesdóttir, Á., & Réthoré, P. E. (2024a). Aerodynamic effects of leading-edge erosion in wind farm flow modeling. Wind Energy Science9, 1811-1826. https://doi.org/10.5194/wes-9-1811-2024

Visbech, J., Göçmen, T., Réthoré, P.-E., & Hasager, C. B. (2024b). Erosion-safe operation using double deep Q-learning. In The Science of Making Torque from Wind (TORQUE 2024): Dynamics, control, and monitoring Article 032047 IOP Publishing. https://doi.org/10.1088/1742-6596/2767/3/032047

Services
Services

Data

WP2.1+WP2.2 Pryor, S.C., Barthelmie, R.J., Cadance, J., Dyer, K., Hasager, C., Herring, R., Kral, S.T., Prieto, R., Reuder, J., Rodgers, M., Veraat, M.  (2022).  IEA Wind Task 46 Technical Report: Atmospheric drivers of wind turbine blade leading edge erosion: Hydrometeors. Dataset

The dataset can be also found in Zenodo. The unique doi is 10.5281/zenodo.5648211

WP2.3 Pryor, S.C., Barthelmie, R.J., Campobasse, S., Dellwik, E., Hannesdóttir, Á., Hasager, C., Kral, S.T., Reuder, J., Rodgers, M., Veraat, M.  (2023).  Metadata Ancillary Variables Data Data

Software code at gitlab, Ásta Hannesdóttir (2024). https://gitlab.windenergy.dtu.dk/astah/era5_erosion_atlas

Software code WP4.3 Simon, J. E. & Johansen, N. F.-J. (2024). Leading Edge Erosion lifetime calculations  https://gitlab.windenergy.dtu.dk/jaensi1/leading-edge-erosion-lifetime-calculations

Software code WP3.1 Bak, C. & Meyer Forsting, A. (2023) SALT – Simplified Aerodynamic Loss Tool (1.0.0 – beta). DTU Wind, Technical University of Denmark. https://doi.org/10.5281/zenodo.7906333  Further information in Bak, C. (2022) J. Phys.: Conf. Ser. 2265 032038

Services

Operating Agent Charlotte Bay Hasager

Professor, Department of Wind and Energy Systems

cbha@dtu.dk

DTU Wind and Energy Systems

DTU Wind and Energy Systems
Frederiksborgvej 399
4000 Roskilde
Denmark